
NESI Part 5: Net-Centric Developer's
Guide

iii

Table Of Contents
NESI implementation framework ...1
References ..2
Overview..3
Releasability statement ...4
Vendor neutrality..5
Disclaimer ..6
Contributions and comments...7
Open-source site ...8
NESI development guidance ...9
Documentation structure ...10

Technical guidance and tactics ...11
High-level guidance ...12

Publish and insulate public interfaces...12
Implement a component-based architecture...12
Automate the software build process..13

Middle tier...15
J2EE environment ...18

Guidance...19
Best practices..19
Examples ..19
References..21
Web service models..22
Key characteristics ..24

Guidance ...25
Examples ...26

Navy operational example: Exposing web services for METOC26
References ..27
References ..28
SOAP...29

Guidance...31
Examples ..32

Web services ...35
Guidance...37
Examples ..37
References..38

.NET framework...39
Web services...39

Data tier ..41
Decouple databases from applications ...42

Guidance...42
Database implementations ..43

Guidance...43
Guidance ...45
Best practices ..46
RDBMS internals ...47

Guidance...47
Best practices..47

XML ...49
References..49
Wrapping XML parsers ...49

NESI Part 5: Net-Centric Developer's Guide

iv

Parsing XML strategies...52

Networks and enterprise services ...55
Discovery ...57

Directory..57
Lightweight Directory Access Protocol (LDAP)...58
Example: Java JNDI to LDAP ...58
Java Naming & Directory Interface (JNDI)..62
Universal Description, Discovery, and Integration (UDDI)..62
References..63

Quality of Service (QoS)..64
Overview ...64
References..65

Communications and transport ...67
Joint Tactical Radio System (JTRS)..68

Overview ...68
Example: SCA-compliant software component ..74
References..96

Reference implementations..101
GIS display environments..102

Goals ...102
NESI strategy ..102
Migration strategies...103
OGC WS architecture ...103
Web Feature and Coverage Services...104
OGC API ...108
Examples: GIS open architecture ...112
Implementing GIS open architecture ..150
Migrating to GIS open architecture ...161

Mobile devices ...164
Overview ...164
Best practices..164
Wireless cell phone environments ..164
PalmOS 4..165

Guidance ..169
Guidance details ..170
G1001 ..171
G1002 ..172
G1003 ..173
G1004 ..174
G1005 ..175
G1007 ..176
G1008 ..177
G1010 ..178
G1011 ..179
G1012 ..180
G1014 ..181
G1018 ..182
G1019 ..183
G1020 ..184
G1021 ..185
G1022 ..186
G1027 ..188
G1030 ..189
G1031 ..190

Table Of Contents

v

G1032 ..192
G1035 ..193
G1037 ..194
G1043 ..195
G1044 ..196
G1045 ..197
G1049 ..198
G1050 ..199
G1052 ..200
G1053 ..201
G1055 ..202
G1056 ..203
G1058 ..204
G1060 ..205
G1071 ..206
G1073 ..207
G1078 ..208
G1079 ..209
G1080 ..210
G1082 ..211
G1083 ..212
G1084 ..213
G1085 ..214
G1086 ..215
G1087 ..217
G1088 ..218
G1090 ..219
G1091 ..223
G1093 ..224
G1094 ..225
G1095 ..226
G1101 ..227
G1117 ..228
G1118 ..229

Example ..229
G1119 ..236
G1121 ..237
G1123 ..241
G1126 ..242
G1127 ..243
G1131 ..244
G1132 ..247
G1141 ..248
G1144 ..249
G1146 ..250
G1147 ..251
G1148 ..252
G1151 ..253
G1154 ..254
G1155 ..255
G1190 ..256
G1200 ..257
G1201 ..258
G1202 ..259
G1203 ..263
G1204 ..265

NESI Part 5: Net-Centric Developer's Guide

vi

G1205 ..271
G1208 ..272
G1209 ..273
G1210 ..274
G1211 ..275
G1212 ..276
G1213 ..277
G1214 ..278
G1215 ..279
G1216 ..280
G1217 ..281
G1218 ..282
G1219 ..283
G1220 ..284
G1221 ..285
G1222 ..286
G1223 ..287
G1224 ..288
G1225 ..289
G1236 ..290
G1237 ..291
G1239 ..292
G1245 ..293

Best practices ..297
Best practices details...298
BP1038 ..299
BP1039 ..300
BP1040 ..301
BP1041 ..302
BP1042 ..303
BP1054 ..304
BP1075 ..305
BP1076 ..306
BP1077 ..307
BP1097 ..308
BP1098 ..309
BP1100 ..310
BP1109 ..311
BP1111 ..312
BP1112 ..313
BP1116 ..314
BP1122 ..315
BP1139 ..316
BP1140 ..317
BP1143 ..318
BP1145 ..319
BP1177 ..320
BP1226 ..321
BP1227 ..322
BP1228 ..323
BP1229 ..324
BP1230 ..325
BP1231 ..326
BP1232 ..327
BP1233 ..328

Table Of Contents

vii

BP1234 ..329
BP1235 ..330
BP1240 ..331
BP1241 ..332
BP1242 ..333
BP1243 ..334
BP1244 ..335
BP1246 ..337
BP1247 ..338
BP1248 ..339
BP1249 ..340
BP1250 ..341
BP1251 ..342
BP1252 ..343
BP1253 ..344
BP1254 ..348
BP1255 ..349
BP1256 ..350
BP1257 ..352
BP1258 ..353
BP1259 ..354
BP1260 ..355
BP1261 ..356
BP1262 ..357
BP1263 ..358
BP1264 ..359
BP1265 ..360

Appendices ..361
Technical References..362

Books ..362
Web sites ..364

Automated testing tools ...368
Environments...369
Security testing tools ...370
Namespace management procedures ..371
Mobile code ...374
Java developer programs ..375
Navy-specific guidelines ..376

COE-M build lists ..376
COMPOSE software list..386
Network security policy guidance..388

Cross-reference between NESI and other initiatives...389
Navy Enterprise Portal (NEP) architecture ...389

Open-source tools ...392
Apache Ant..392
Apache Axis ..393
Tomcat ..395
Xalan-Java ..395
Xerces2 Java Parser...396
jUDDI...398
UDDI browsers..409

Glossary ...417

Index ...467

1

NESI implementation framework

NESI Part 5: Net-Centric Developer's Guide

2

References
(a) DoD Directive 5000.1, The Defense Acquisition System, 24 November 2003.

(b) DoD Instruction 5000.2, Operation of the Defense Acquisition System, 12 May 2003.

(c) DoD Directive 8100.1, Global Information Grid (GIG) Overarching Policy, 21 November
2003.

(d) DoD Directive 4630.5, Interoperability and Supportability of Information Technology (IT)
and National Security Systems (NSS), 05 May 2004.

(e) DoD Instruction 4630.8, Procedures for Interoperability and Supportability of Information
Technology (IT) and National Security Systems (NSS), 30 June 2004.

(f) DoD Directive 5101.7, DoD Executive Agent for Information Technology Standards, 21 May
2004.

(g) DoD Global Information Grid (GIG) Architecture, Version 2.0, August 2003.

(h) DoD Joint Technical Architecture, Version 6.0, 3 October 2003.

(i) DoD Net-Centric Data Strategy, DoD Chief Information Officer, 9 May 2003.

(j) CJCSI 3170.01D, Joint Capabilities Integration and Development System, 12 March 2004.

(k) CJCSM 3170.01A, Operation of the Joint Capabilities Integration and Development System,
12 March 2004.

(l) CJCSI 6212.01C, Interoperability and Supportability of Information Technology and National
Security Systems, 20 November 2003.

(m) Net-Centric Operations and Warfare Reference Model (NCOW RM) V1.0, September 2003.

(n) Net-Centric Checklist, V2.1.3, Office of the Assistant Secretary of Defense for Networks and
Information Integration/Department of Defense Chief Information Officer, 12 May 2004.

(o) A Modular Open Systems Approach (MOSA) to Acquisition, Version 2.0, September 2004.

(p) DoD IT Standards Registry (DISR), http://disronline.disa.mil.

(q) Net-centric Attributes List, Office of the Assistant Secretary of Defense for Networks and
Information Integration/Department of Defense Chief Information Officer, June 2004.

NESI implementation framework

3

Overview
Net-centric Enterprise Solutions for Interoperability (NESI) is a joint effort between the U.S.
Navy’s Program Executive Office for C4I & Space and the U.S. Air Force’s Electronic Systems
Center. It provides implementation guidance that facilitates the design, development,
maintenance, evolution, and use of information systems for the Net-Centric Operations and
Warfare (NCOW) environment. NESI has also been provided to other Department of Defense
(DoD) services and agencies for potential adoption.

The NESI Implementation guidance applies to all phases of the acquisition process as defined in
references (a) and (b). NESI comprises six parts, each focusing on a specific area of guidance.
NESI Part 1: Net-centric Overview describes each part in detail.

NESI provides guidance on software development best practices, and examples for developing
Net-Centric software. It is aligned with the design principles of reference (o). NESI is not a
replacement for references (h), (m), or (n).

The overall goal is to provide common, cross-service guidance in measurable terms for the
program managers and developers over the lifecycle of net-centric solutions. The objective is not
to replace or repeat existing standards or guidance, but to organize, clarify, and reconcile
conflicting mandates around the acquisition process..

NESI subsumes a number of references and directives: in particular, the Air Force C2 Enterprise
Technical Reference Architecture (C2ERA)[1] and the Navy Reusable Applications Integration
and Development Standards (RAPIDS) Initial authority for NESI is per the Memorandum of
Agreement between Commander, Space and Naval Warfare Systems (SPAWAR), PEO C4I &
Space, and the United States Air Force Electronic Systems Center, dated 22 December 2003,
Subject: Cooperation Agreement for Net-Centric Solutions for Interoperability (NESI).

In addition to references (a) through (q), Navy PEO C4I has mandated a software maintenance
policy for its programs that requires the use of NESI Part 3: Net-Centric Migration Guidance.

NESI is intended to help programs comply with the DoD Net-Centric directives, instructions, and
other guidance documentation (listed as references (a) through (q)). This guidance will continue
to evolve as direction and our understanding of the requirements of net-centricity evolve. NESI
will be updated to reflect changes to the guiding documents and new regulations.
[1] Air Force C2 Enterprise Technical Reference Architecture, v3.0-14, 1 December 2003.

[2] RAPIDS Reusable Application Integration and Development Standards, Navy PEO C4I & Space, December 2003
(DRAFT V1.5), https://nesi.spawar.navy.mil.

[3] Software Maintenance Policy, Department of the Navy, Navy PEO C4I & Space, 14 June 2004.

NESI Part 5: Net-Centric Developer's Guide

4

Releasability statement
This document has been cleared for public release by competent authority in accordance with
DoD Directive 5230.9 and is granted Distribution Statement A: Approved for public release;
distribution is unlimited. You may obtain electronic copies at https://nesi.hanscom.af.mil or
https://nesi.spawar.navy.mil.

NESI implementation framework

5

Vendor neutrality
The NESI documentation sometimes refers to specific vendors and their products in the context
of examples and lists. However, NESI is vendor-neutral. Mentioning a vendor or product is not
intended as an endorsement, nor is a lack of mention intended as a lack of endorsement.

Code examples typically use open-source products, since NESI is built on the open-source
philosophy. Since NESI accepts contributions from multiple sources, the examples also tend to
reflect whatever tools the contributor was using or knew best. However, the products described
are not necessarily the best choice for every circumstance. You are encouraged to analyze your
specific project requirements and choose your tools accordingly. There is no need to obtain, or
ask your contractors to obtain, the open-source tools that appear as examples in this guide.
Similarly, any lists of products or vendors are intended only as references or starting points, and
not as a list of recommended or mandated options.

NESI Part 5: Net-Centric Developer's Guide

6

Disclaimer
Every effort has been made to make this documentation as complete and accurate as possible. It is
expected that the documentation will be updated frequently, and will not always immediately
reflect the latest technology or guidance.

NESI implementation framework

7

Contributions and comments
NESI is an open-source project that will involve the entire development community. Anyone is
welcome to contribute comments, corrections, or relevant knowledge to the guides. For Navy
contributions, send email to nesi@spawar.navy.mil. For Air Force contributions, send email to
nesi@hanscom.af.mil.

NESI Part 5: Net-Centric Developer's Guide

8

Open-source site
The Navy has established an open-source site to support community involvement. It is located at
https://nesi.spawar.navy.mil. This evolved from the Navy RAPIDS initiative. Use this site for
collaborative software development across distributed teams.

NESI implementation framework

9

NESI development guidance
This developer’s guide provides chief engineers and software developers with detailed
implementation guidance for applications, services, and data. This effort leverages current best
practices from the software development community to enable the DoD to create net-centric,
extensible, scalable enterprise applications. The goal is to modernize and improve the
development of Net-Centric applications and services as critical warfighter capabilities.

Software developers can choose to use published applications via interfaces and services or build
applications and services that interface with the infrastructure. Any application that must
interoperate in the DoD Net-Centric enterprise should be built and maintained in accordance with
the standards, policies, and processes within this guide.

The tactics described in this document are designed to:

• Permit independent paces of development and change on each side of the enterprise,
reducing risk and impacts of changes to application developers.

• Implement connection strategies that extend the life and reach of legacy applications
while legacy application developers restructure their systems.

NESI Part 5: Net-Centric Developer's Guide

10

Documentation structure
This document provides developers with detailed software development guidance, best coding
practices, lessons learned, and code samples. It is intended as a reference, not a document to be
read cover to cover.

The contents follow this basic structure:

• Overview: Describes the topic in terms suitable for the entire NESI audience, and lists
future topics that may be covered in that area

• Guidance: Lists contractual statements relating to the topic.

• Best practices: Contains lessons learned from industry and the DoD, design patterns,
code snippets, and configuration examples; developers can augment their efforts by
leveraging and reusing this information

• Examples: Provides code samples that illustrate the guidance and best practices. For a
statement about the choice of tools, see the Vendor neutrality disclaimer.

• Glossary: Defines jargon and terms used in a specific sense.

• References: Lists of books, web sites, and other sources of information that may assist
the planning or development effort.

Program managers and chief engineers will find the overview and guidance sections helpful
while:

• Directing their programs and activities to build systems. Use this information in
combination with NESI Part 2: Net-Centric ASD (NII) Checklist Guidance and NESI Part
4: Net-Centric Node Design Guidance.

• Reviewing Statements of Work. (Developers may also use the information for this
purpose.)

• Reviewing deliverables for compliance.

• Migrating legacy systems to the net-centric environment. Use this information in
combination with NESI Part 3: Net-Centric Migration Guidance.

11

Technical guidance and tactics
This section contains guidance on the following topics:

• High-level guidance

• Interface design

Future guidance will include:

• Design patterns and examples: Recommended patterns and implementations

• Developer’s Toolkit creation: Toolkit containing a jumpstart/quick start guide,
developer’s guide, sample code, automated test drivers and certification tools, and access
to open-source sites.

• Enterprise Checklist: Overview of actions prior to enterprise deployment.

• Error handling: Error management processes and guidelines.

• Interface management: Public interface management processes and guidelines.

• Logging management: Logging and auditing processes and guidelines.

Note that this guidance may be moved to other sections of the NESI documentation, as
appropriate.

NESI Part 5: Net-Centric Developer's Guide

12

High-level guidance
This section lists high-level guidance for developing Net-Centric software. The remainder of this
document provides more detailed guidance on specific topics. Adhering to the guidance in this
document will minimize impacts to programs and help manage change.

• Publish and insulate public interfaces

• Implement a component-based architecture

• Automate the software build process

Publish and insulate public interfaces
This section lists high-level guidance for implementing public interfaces.

Guidance
• Define public interfaces in a formal standard. [G1001]

• Separate public interfaces from the implementation of an application to control change
between evolving applications and the evolving enterprise. [G1002]

• Separate the contents of application libraries that are to be shared from libraries that are
to be used internally. [G1003]

• Make public interfaces backward-compatible within the constraints of a published
deprecation policy. [G1004]

• Separate infrastructure capabilities from mission functions. [G1005]

• Ensure that applications use open, standardized, vendor-neutral API(s). [G1007]

• Isolate platform-specific interfaces and vendor dependencies. [G1008]

• Use open-standards logging frameworks. [G1010]

• Insulate public interfaces from compile-time dependencies. [G1022]

Implement a component-based architecture
A component-based architecture (CBA) is:

"An architecture process that enables the design of enterprise solutions using
pre-manufactured components. The focus of the architecture may be a specific
project or the entire enterprise. This architecture provides a plan of what needs
to be built and an overview of what has been built already." Succeeding with
Component-Based Architecture

CBA represents a shift from the traditional, custom-development-oriented,"design, code, and
test” approach that has been used throughout the DoD in the past to a more business-oriented
"architect, acquire, and assemble" approach.

The custom-development approach has been successful in building many systems. However the
integration, evolution, reuse and cost of these systems have presented a problem. Consequently,

Technical guidance and tactics

13

these custom-developed systems have been labeled as archaic stovepipes that can not plug-and-
play with other systems.

CBA promises benefits such as shorter time to market, lower risk, and modular and adaptive
systems.

The core of CBA is components. Consequently the term component needs to be defined. The
following guidance statements capture the essence of components.

Guidance
• All components must be independently deployable. [G1011]

• Components should expose functionality through a set of services. [G1012]

• Components should be externally configurable. [G1217]

Automate the software build process
A software build process interfaces with source control, compiles code, creates executables, runs
unit tests, packages and deploys, and generates documentation. An automated software build
process is a necessary part of every software development project and ensures the software will
be built in the same manner each time.

Guidance
Use a build tool that: [G1190]

• Supports operation in an automated mode. [G1218]

• Checks out files from configuration control. [G1219]

• Compiles source code and dependencies that have been modified. [G1220]

• Creates libraries or archives after all required compiles are complete. [G1221]

• Creates executables. [G1222]

• Is capable of running unit tests. [G1223]

• Cleans out intermediate files that can be regenerated. [G1224]

• Is independent of any Integrated Development Environment. [G1225]

Best practices
• All application developers should use the ANT build tool to build, package, and deploy

J2EE applications. [BP1075]

References
• ANT - http://ant.apache.org/

• J2EE - http://java.sun.com/j2ee/

15

Middle tier
The middle tier provides process management services such as process development, monitoring,
and resourcing, that are shared by multiple applications.

Future guidance will include:

• Application collaboration/Mediation framework: Also known as backend integration
application communication.

• Application concurrency control: Concurrency and locking strategies and guidelines
for applications required to operate in a multi-user environment. Transactional strategies
for operations with other services in the enterprise.

• Application server guidelines: Sybase application server topics, transactions, and data
access guidelines.

• Connection strategies: Applications written in or using Fortran, Ada, C/C++, Cold
Fusion, Java, J2EE, Microsoft Office, and .NET.

• CORBA: Real-time topics, cross-vendor interoperability issues, enterprise connection
strategies, and Software Communication Architecture (SCA) issues.

• Design patterns and examples: Recommended patterns and implementations.

NESI Part 5: Net-Centric Developer's Guide

16

• Microsoft component model: .NET, COM/DCOM,COM+, security, and data-access
guidelines.

• Microsoft Office: Connector strategies to and from the enterprise.

• Middleware guidelines: Guidelines on developing connectors to and from the enterprise.

• Other application server operations: JBoss, Orion, Sybase EAServer.

• Security guidelines: Authentication schemes, secure coding practices, digital certificates,
digital signatures, firewall polices, protection mechanisms, and SSL.

• Transactional strategies: For operations with other services in the enterprise.

• Web services: UDDI operations and taxonomies.

Note that this guidance may be moved to other sections of the NESI documentation, as
appropriate.

The middle tier provides process management services such as process development, monitoring,
and resourcing, that are shared by multiple applications.

Future guidance will include:

• Application collaboration/Mediation framework: Also known as backend integration
application communication.

• Application concurrency control: Concurrency and locking strategies and guidelines
for applications required to operate in a multi-user environment. Transactional strategies
for operations with other services in the enterprise.

Middle tier

17

• Application server guidelines: Sybase application server topics, transactions, and data
access guidelines.

• Connection strategies: Applications written in or using Fortran, Ada, C/C++, Cold
Fusion, Java, J2EE, Microsoft Office, and .NET.

• CORBA: Real-time topics, cross-vendor interoperability issues, enterprise connection
strategies, and Software Communication Architecture (SCA) issues.

• Design patterns and examples: Recommended patterns and implementations.

• Microsoft component model: .NET, COM/DCOM,COM+, security, and data-access
guidelines.

• Microsoft Office: Connector strategies to and from the enterprise.

• Middleware guidelines: Guidelines on developing connectors to and from the enterprise.

• Other application server operations: JBoss, Orion, Sybase EAServer.

• Security guidelines: Authentication schemes, secure coding practices, digital certificates,
digital signatures, firewall polices, protection mechanisms, and SSL.

• Transactional strategies: For operations with other services in the enterprise.

• Web services: UDDI operations and taxonomies.

Note that this guidance may be moved to other sections of the NESI documentation, as
appropriate.

NESI Part 5: Net-Centric Developer's Guide

18

J2EE environment
In the J2EE environment there are multiple deployment descriptors that correspond to the type of
modules being deployed. The deployment descriptors are contained in the enterprise archive file
(EAR). A deployment descriptor is an XML file that is inside an archive. It describes the contents
of the archive and explicit instructions on how the application server’s J2EE-compliant container
needs to be configured to run the application.

The table below shows the J2EE standard deployment descriptor files and the specific
applications to which they apply. See http://java.sun.com/dtd/ for details of each XML file.

Component or
Application

Scope Deployment
descriptors

Packaging
archives

Web application J2EE web.xml . war

Enterprise bean J2EE ejb-jar.xml . jar

Resource adapter J2EE ra.xml . rar

Enterprise
application

J2EE application.xml .EAR

Client application J2EE application-
client.xml

Middle tier

19

In the J2EE environment, packaging and deployment is done using an archive file. An archive file
is a self-contained module that contains all of an application's Java-class files, static files, and
deployment descriptor files. Archive files are created using a jar utility.

The format for a deployment descriptor is defined in both the EJB specification and the servlet
specification. The Sun standards are defined at the following locations:

J2EE environment applications http://java.sun.com/products/ejb/docs.html

Non-J2EE or standard web
applications

http://java.sun.com/products/servlet/download.html

Note: Some vendors have extensions to these guidelines or have specific descriptors for their
products. Refer to the vendor's site for these details. For example, the WebLogic BEA
Application Server descriptors are available at http://e-
docs.bea.com/wls/docs70/webapp/WebLogic _xml.html.

Guidance
• Document the use of non-J2EE-defined deployment descriptors, and explain how the

deployment descriptors are used. [G1078]

• J2EE applications should isolate application configuration data values into the
deployment descriptor.[G1079]

o Define all external resources using a separate resource-ref element for each
resource. [G1200]

o Define configuration data such as environment variables, parameters, and
properties using resource-env-ref elements. [G1201]

Best practices
• When deploying a new application to a WebLogic application server (e.g., ear, war, rar),

do not edit the WebLogic startup file to add application-specific information. This file is
used for server startup only and should not contain application-specific logic. The system
administrator must approve and coordinate all updates to this file. [BP1076]

• Do not edit the config.xml file manually. The config.xml file is the persistent store used
by the WebLogic server to store runtime configuration parameters. Instead, use the
WebLogic management console to configure the WebLogic server. Any edits done
through the management console will be written to config.xml. [BP1077]

Examples
Environment entries
Bean environment values are defined in the deployment descriptor using the env-entry element.
Use J2EE provider utilities to modify these values during or after deployment.
<env-entry>
 <env-entry-name>minQueueBuffer</env-entry-name>

NESI Part 5: Net-Centric Developer's Guide

20

 <env-entry-type>java.lang.Integer</env-entry-type>
 <env-entry-value>12</env-entry-value>
 </env-entry>
 <env-entry>
 <env-entry-name>maxQueueBuffer</env-entry-name>
 <env-entry-type>java.lang.Integer</env-entry-type>
 <env-entry-value>120</env-entry-value>
 </env-entry>
A bean can access the environment entries with a similar code to the following:
 InitialContext initialContext
 = new InitialContext();
 Context myenv
 = initialContext.lookup
 ("java:comp/env");
 Integer minQueueBuffer
 = (Integer) myenv.lookup("minQueueBuffer ");
 Integer maxQueueBuffer
 = (Integer) myenv.lookup("maxQueueBuffer ");
. . .

Resource references
Use resource references to define and use environment entries. By default, the initial J2EE
environment context is java:comp/env/. Consequently, it is best to classify all resources into
subcontexts of the default. For example, classify all JDBC definitions using the default context
with a jdbc subcontext appended to it. For example:
java:comp/env/jdbc
In the standard deployment descriptor, the declaration of a resource
reference to a JDBC connection factory is:
 <resource-ref>
 <res-ref-name>jdbc/JTMDS</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
 </resource-ref>
And the bean accesses the data source as in the following:
 InitialContext initialContext
 = new InitialContext();
 DataSource dataSource
 = initialContext.lookup
 ("java:comp/env/jdbc/JTMDS");

Resource environment references
The resource-env-ref describes administered objects, as opposed to objects that are better
maintained programmatically. Administered objects help define objects that are likely to change
between implementations: for example, JMS or database implementations. It is best to administer
these objects along with other administrative tasks that vary from provider to provider and not
within the application. This makes the code more portable.
 <resource-env-ref>
 <resource-env-ref-name>jms/ConnectionFactory</resource-env-ref-
name>
 <resource-env-ref-type>javax.jms.Queue</resource-env-ref-type>
 </resource-env-ref>
The code to access the administered object follows:

Middle tier

21

 InitialContext initialContext
 = new InitialContext();
 ConnectionFactory connectionFactory = (ConnectionFactory)
 ctx.lookup("jms/ConnectionFactory");

Example deployment descriptors

ejb-jar.xml
<ejb-jar>
 <enterprise-beans>
 <session>
 <ejb-name>TestClient</ejb-name>
 <home>TestClientHome</home>
 <remote>TestClient</remote>
 <ejb-class>MyLogicBean</ejb-class>
 <session-type>Stateless</session-type>
 <transaction-type>Container</transaction-type>
 </session>
 </enterprise-beans>
 . . .
</ejb-jar>

web.xml
/* Descriptor for Application named: HelloWorld.jsp */
MyWebApp/ (public directory)
 HelloWorld.jsp
WEB-INF/
 Web.xml
 Classes/myBean
<?xml version="1.0" encoding="UTF-8"?>
<web-app>
 <display-name>HelloWorldJSP</display-name>
 <servlet>
 <servlet-name>HelloWorld</servlet-name>
 <display-name>HelloWorld</display-name>
 <jsp-file>/HelloWorld.jsp</jsp-file>
 </servlet>
 <session-config>
 <session-timeout>30</session-timeout>
 </session-config>
 <ejb-ref>
 <ejb-ref-name>ejb/helloejb</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <home>HelloHome</home>
 <remote>Hello</remote>
 </ejb-ref>
</web-app>
 Contact.class

References
• J2EE - http://java.sun.com/j2ee/

• EJB - http://java.sun.com/products/ejb/

NESI Part 5: Net-Centric Developer's Guide

22

• .jar - http://java.sun.com/developer/Books/javaprogramming/JAR/

• .war - http://java.sun.com/webservices/docs/1.0/tutorial/doc/WebApp3.html

• .ear - http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/Overview4.html

• .rar - http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/Connector2.html

A web service is an application that exists in a distributed environment, such as the Internet. A
web service accepts a request, performs its function based on the request, and returns a response.
The request and the response can be part of the same operation, or they can occur separately, in
which case the consumer does not need to wait for a response. Both the request and the response
usually take the form of XML, use a portable data-interchange format called SOAP, and are
delivered over a wire protocol, such as HTTP.

Web services can reside on top of existing legacy applications and expose services to the net. The
web services architecture illustrated below implements the service-oriented architecture pattern.
For more information on design patterns, see Web Service Patterns: Java Edition by Paul B.
Monday.

Web service models
Web services have traditionally been used to connect people to services. However, as the web-
service infrastructure has matured, a new model has emerged, the service-to-service model.

Traditional model

In a classic web service, a request is usually made to a web service using a browser. The request
is submitted to the web service using HTTP or HTTPS over the Internet or an intranet. The web
service processes the request and returns an HTML page that can be displayed in a browser.

Middle tier

23

A classic web service has the following characteristics:

• Web page appears via a browser

• Connection is via TCP/IP

• Transport is HTTP/HTTPS

• Message format is HTML

Service-to-service model

Application servers used to be responsible for providing machine-to-machine services. Now web
servers can handle similar work. The web server can pass a request as an XML payload
embedded in a TCP/IP and HTTP request, process the data, and respond. The response is
typically in the form of an HTML web page or an XML payload that a client application can use.

Machine-to-machine web services have the following characteristics:

• Two independent applications

• Two independent servers

• Connection is via TCP/IP

• Transport is HTTP (port 80)

NESI Part 5: Net-Centric Developer's Guide

24

• Message format is XML payload in SOAP format

Key characteristics
Some key characteristics of web services are:

• High-overhead interactions; may be too heavy for some applications

• Loosely coupled collaborators (e.g., client/server)

• Multiple layers of parsing, marshalling, and unmarshalling

• Non-standard content

• Standard interaction protocol

• No support for services such as messaging and security

• Infant technology

• No support for pass-by-reference

Middle tier

25

Guidance
• WSDL files used to describe web services must be validated. [G1087]

• Use isolation design patterns such as façade, proxy, or adapter to isolate the application
from the connection and manipulation of SOAP messages. [G1088]

• Do not hard-code a web service’s endpoint. [G1090]

NESI Part 5: Net-Centric Developer's Guide

26

Examples
Navy operational example: Exposing web services for
METOC
The following figure shows a simplified example of the architecture, illustrating a METOC
metcast application that uses SOAP as a proxy to legacy content.

Middle tier

27

References
• SOAP definition - http://sbc.webopedia.com/TERM/S/SOAP.html

• Web Service Definition Language (WSDL) - http://www.w3.org/TR/wsdl

• Adapter pattern - http://c2.com/cgi/wiki?AdapterPattern

• Design patterns: Proxy - http://www.dofactory.com/Patterns/PatternProxy.aspx

• Façade pattern - http://c2.com/cgi/wiki?FacadePattern

.NET web services use ASP.NET to expose the middle tier’s API via SOAP. .NET web services
also support the WSDL 1.1 specification and uses a WSDL document to describe it. In this case,
however, the WSDL document contains an XML namespace that uniquely identifies the web
service's endpoints. .NET provides:

• A client-side component that lets an application invoke web service operations described
by a WSDL document.

• A server-side component that maps web service operations to COM-object method calls
as described by a WSDL and a Web Services Meta Language (WSML) file, which is
needed for Microsoft's implementation of SOAP.

NESI Part 5: Net-Centric Developer's Guide

28

References
• For information on .NET vs. J2EE web services, see

http://www.webservicesarchitect.com/content/articles/hanson01.asp.

Middle tier

29

SOAP
SOAP is an XML message-based protocol. It uses HTTP to send text commands to web services
across the internet. SOAP is lighter weight and requires less programming than similar protocols
such as CORBA and DCOM. The extensible messaging framework is independent of
programming models and other implementation-specific semantics.

The World Wide Web Consortium provides this description of SOAP:

SOAP Version 1.2 (SOAP) is a lightweight protocol intended for exchanging
structured information in a decentralized, distributed environment. It uses XML
technologies to define an extensible messaging framework providing a message
construct that can be exchanged over a variety of underlying protocols. The
framework has been designed to be independent of any particular programming
model and other implementation specific semantics.

Two major design goals for SOAP are simplicity and extensibility. SOAP attempts to meet these
goals by omitting distributed-system features from the messaging framework. Such features
include but are not limited to reliability, security, correlation, routing, and Message Exchange
Patterns (MEPs). While it is anticipated that many features will be defined, this specification
provides specifics only for two MEPs. Other features are left to be defined as extensions by other
specifications.

Key characteristics
• SOAP is RPC-based. It offers an XML-RPS with extensibility mechanisms; for instance,

it allows schemas to define types.

• SOAP is an XML document.

• SOAP is text-based, providing a standard mechanism for passing through firewalls via
the HTTP ports.

• There are many SOAP language bindings, and new ones are frequently announced.

• SOAP is a wire protocol and does not have an activation mechanism. It is inherently
stateless.

• SOAP does not implement security.

• SOAP is case-sensitive and white-space-sensitive.

Message formats

Message styles
The W3C’s WSDL 1.1 Specification identifies two message styles: Document and RPC. The
purpose of the styles determines how the content of the SOAP message body is formatted.

Document The SOAP Body contains one or more child elements called parts.
There are no SOAP formatting rules for what the SOAP Body
contains; it contains whatever the sender and the receiver agree upon.
Note: There is a Wrapped form of this style that is required to
interoperate with Microsoft web services using Document style.

NESI Part 5: Net-Centric Developer's Guide

30

There is no specification that defines this style.

RPC RPC implies that SOAP Body contains an element with the name of
the method or remote procedure being invoked. This element in turn
contains an element for each parameter of that procedure.

Serialization formats
For applications that use serialization/deserialization to abstract away the data wire format, there
is one more choice to be made: the serialization format. The following table describes the two
most popular serialization formats today.

SOAP encoding SOAP encoding uses a set of rules to serialize the data transferred
between the client and the server. The rules are defined in section 5 of
the WSDL 1.1 Specification. These rules are also referred to as
“section 5 encoding.” The rules specify how to serialize objects,
structures, arrays, and object graphs and directly use the predefined
XML Schema data types. Generally, an application using SOAP
encoding should use the RPC message style.

Literal Data is serialized according to an independent external schema. There
are no preset rules for serializing objects, structures, and graphs, etc.
in the literal encoding style. The industry is overwhelmingly
embracing W3C XML schemas.

Note: Document style can be interpreted as either an XML string or as a W3C DOM Document
Element. Microsoft has a technique called Wrapped that encapsulates the information being
exchanged, regardless of the style.

Structure
A SOAP message comprises three parts: an envelope, an optional header, and a required body.
The envelope encapsulates the other two elements. The optional header contains one or more
header elements that contain meta-information about the method calls.

Middle tier

31

Envelope

is the root of the soap request. At a minimum, it defines the SOAP namespace for SOAP
1.2. The envelope may define additional namespaces.

Header

contains auxilary information as SOAP blocks, such as authentication, routing
information, or transaction identifier. The header is optional.

Body

contains the main information in one or more SOAP blocks; for example, a SOAP block
for RPC call. The body is mandatory and it must appear after the header.

Fault

is a special block that indicates protocol-level error. If present, it must appear within a
Body element.

The SOAP payload is encapsulated within the SOAP envelope, which is part of the HTTP
payload. The following figure shows an HTTP payload that contains a SOAP message.

Guidance
• Use the document literal style for all data transferred using SOAP where the document is

a W3 Organization’s Document Object Model (DOM). [G1082]

• Documents transferred using SOAP should be validated by an XSD defined by the
Community of Interest (COI). [G1084]

NESI Part 5: Net-Centric Developer's Guide

32

• Use isolation design patterns such as façade, proxy, or adapter to isolate the application
from the connection and manipulation of SOAP messages. [G1088]

• Web services must handle SOAP exceptions and SOAP faults. [G1093]

• Use W3C fault codes for all SOAP faults. [G1095]

Examples
The following is an example of a web service client requesting celestial information about a
particular location and receiving the results. Both the request and the response are made using the
WSI document literal style of send and receiving XML SOAP messages.

These listings are the results of using a tunnel monitoring utility called NetTool available from
the SourceForge site http://sourceforge.net/projects/nettool/. The Tunnel monitoring tool
basically interjects itself between the web service client and the web service producer. The client
connects to the tunnel monitor instead of connecting directly to the producer. The tunnel tool then
displays or logs the traffic and forwards it onto the producer. The producer returns the response to
the tunnel tool monitor. The response is also displayed or logged and forwarded back to the
client.

Without Tunnel Monitor

Middle tier

33

With Tunnel Monitor

Request
POST /DocClientWebProject/BeaServers/CelestialInfoDocDoc.jws HTTP/1.0
Content-Type: text/xml; charset=utf-8
Accept: application/soap+xml, application/dime, multipart/related,
text/*
User-Agent: Axis/1.1
Host: 192.168.2.8:7003
Cache-Control: no-cache
Pragma: no-cache
SOAPAction: ""
Content-Length: 597

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <soapenv:Body>
 <in0
 xsi:type="ns1:Document"
 xmlns="urn:CelestialInfoDocDoc"
 xmlns:ns1="http://xml.apache.org/xml-soap">
 <DocumentRequestData xmlns="">
 <city>San Diego</city>
 <stateOrProvince>California</stateOrProvince>
 <country>USA</country>
 <documentName>CelestialInfoRpt</documentName>
 </DocumentRequestData>
 </in0>
 </soapenv:Body>
</soapenv:Envelope>

Response
HTTP/1.1 200 OK
Date: Fri, 10 Sep 2004 17:53:55 GMT
Pragma: no-cache

NESI Part 5: Net-Centric Developer's Guide

34

Server: WebLogic Server 8.1 SP3 Tue Jun 29 23:11:19 PDT 2004 404973
WebLogic Server 8.1 SP3 Tue Jun 29 23:11:19 PDT 2004 404973 WebLogic
Server 8.1 SP3 Tue Jun 29 23:11:19 PDT 2004 404973
Content-Length: 647
Content-Type: text/xml; charset=UTF-8
Expires: Thu, 01 Jan 1970 00:00:00 GMT
Cache-Control: no-cache
Connection: Close

<?xml version="1.0" encoding="utf-8"?>
<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <SOAP-ENV:Body>
 <ns:getCelestialInfoReturn xmlns:ns='urn:CelestialInfoDocDoc'>
 <CelestialInfoRpt>
 <description>DOC-DOC: Results returned from :
RAPIDS14(192.168.2.8)
 </description>
 <moonrise>2004-07-12 1:59 AM PDT</moonrise>
 <moonset>2004-07-12 4:22 PM PDT</moonset>
 <sunrise>2004-07-12 5:50 AM PDT</sunrise>
 <sunset>2004-07-12 7:58 PM PDT</sunset>
 </CelestialInfoRpt>
 </ns:getCelestialInfoReturn>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Middle tier

35

Web services
A web service is an application that exists in a distributed environment, such as the Internet. A
web service accepts a request, performs its function based on the request, and returns a response.
The request and the response can be part of the same operation, or they can occur separately, in
which case the consumer does not need to wait for a response. Both the request and the response
usually take the form of XML, use a portable data-interchange format called SOAP, and are
delivered over a wire protocol, such as HTTP.

Web services can reside on top of existing legacy applications and expose services to the net. The
web services architecture illustrated below implements the service-oriented architecture pattern.
For more information on design patterns, see Web Service Patterns: Java Edition by Paul B.
Monday.

Web service models
Web services have traditionally been used to connect people to services. However, as the web-
service infrastructure has matured, a new model has emerged, the service-to-service model.

Traditional model
In a classic web service, a request is usually made to a web service using a browser. The request
is submitted to the web service using HTTP or HTTPS over the Internet or an intranet. The web
service processes the request and returns an HTML page that can be displayed in a browser.

NESI Part 5: Net-Centric Developer's Guide

36

A classic web service has the following characteristics:

• Web page appears via a browser

• Connection is via TCP/IP

• Transport is HTTP/HTTPS

• Message format is HTML

Service-to-service model
Application servers used to be responsible for providing machine-to-machine services. Now web
servers can handle similar work. The web server can pass a request as an XML payload
embedded in a TCP/IP and HTTP request, process the data, and respond. The response is
typically in the form of an HTML web page or an XML payload that a client application can use.

Machine-to-machine web services have the following characteristics:

• Two independent applications

• Two independent servers

• Connection is via TCP/IP

• Transport is HTTP (port 80)

Middle tier

37

• Message format is XML payload in SOAP format

Key characteristics
Some key characteristics of web services are:

• High-overhead interactions; may be too heavy for some applications

• Loosely coupled collaborators (e.g., client/server)

• Multiple layers of parsing, marshalling, and unmarshalling

• Non-standard content

• Standard interaction protocol

• No support for services such as messaging and security

• Infant technology

• No support for pass-by-reference

Guidance
• WSDL files used to describe web services must be validated. [G1087]

• Use isolation design patterns such as façade, proxy, or adapter to isolate the application
from the connection and manipulation of SOAP messages. [G1088]

• Do not hard-code a web service’s endpoint. [G1090]

Examples
Navy operational example: Exposing web services for METOC
The following figure shows a simplified example of the architecture, illustrating a METOC
metcast application that uses SOAP as a proxy to legacy content.

NESI Part 5: Net-Centric Developer's Guide

38

References
• SOAP definition - http://sbc.webopedia.com/TERM/S/SOAP.html

• Web Service Definition Language (WSDL) - http://www.w3.org/TR/wsdl

• Adapter pattern - http://c2.com/cgi/wiki?AdapterPattern

• Design patterns: Proxy - http://www.dofactory.com/Patterns/PatternProxy.aspx

• Façade pattern - http://c2.com/cgi/wiki?FacadePattern

Middle tier

39

.NET framework
Web services
.NET web services use ASP.NET to expose the middle tier’s API via SOAP. .NET web services
also support the WSDL 1.1 specification and uses a WSDL document to describe it. In this case,
however, the WSDL document contains an XML namespace that uniquely identifies the web
service's endpoints. .NET provides:

• A client-side component that lets an application invoke web service operations described
by a WSDL document.

• A server-side component that maps web service operations to COM-object method calls
as described by a WSDL and a Web Services Meta Language (WSML) file, which is
needed for Microsoft's implementation of SOAP.

References
• For information on .NET vs. J2EE web services, see

http://www.webservicesarchitect.com/content/articles/hanson01.asp.

41

Data tier
The data tier is responsible for storing data. It does not (should not) contain any business logic,
and handles only that processing required to access data and maintain its integrity.

Future guidance will include:

• Database topics: Lessons learned from Oracle and Sybase, replication across database
vendors, and database federation concepts.

• Design patterns and examples: Recommended patterns and implementations.

• Security guidelines: Authentication schemes, secure coding practices, digital certificates,
digital signatures, firewall polices, protection mechanisms, and SSL.

• XML: Coding guidelines, namespaces, XML parser usage, wrapper classes, XML
databases, and XML security guidelines like SAML.

Note that this guidance may be moved to other sections of the NESI documentation, as
appropriate.

Most modern multi-tiered systems need to collect, store, retrieve and manage persistent data. This
data persistence is the responsibility of the data tier. In essence, the data tier functionality is
accomplished with modern COTS Database Management Systems (DBMSs) such as MySQL,
Oracle, SQL Server, or Sybase Adaptive Server Enterprise (ASE).

NESI Part 5: Net-Centric Developer's Guide

42

Decouple databases from applications
To promote database independence, access the database only through open-standards interfaces.
The goal is to swap out data sources and/or connect to multiple data sources without affecting the
application or increasing software maintenance costs. Data-level adapters allow applications to
access data through database calls that are native to the requesting application. At this point, the
business logic can be shared with other data sources. This positions the application to move
business logic from the database to the middle tier, to support database independence.

Guidance
• Access the database only through open-standards interfaces, to promote database

independence. [G1014]

o For Java, use JDBC . [G1211]

o For C/C++ and .NET use ODBC. [G1212]

Data tier

43

Database implementations
The data tier is simply a repository for persistent data. There are many ways that data can be
persisted:

• OS file systems

• Hierarchical databases

• Object-oriented databases

• Niche databases

• Native XML databases

• Relational databases

COTS DBMSs are mature technical products, the capabilities of which are being continually
expanded to adapt to and accommodate new technologies.

Guidance
• Implement the data tier using readily available COTS RDBMS products that are

standards-based and provide a rich set of generic capabilities such as ad-hoc queries,
backup, recovery, and indexes. [G1132]

Modeling is an essential step in understanding the data that will comprise a system. Before
implementing a system, it is important to understand the basic data elements and the relationships
of the elements. The end products of data modeling can be XML schemas or RDBMS schema
definitions.

NESI Part 5: Net-Centric Developer's Guide

44

The following guidance applies to the data modeling phase of the data tier.

Data tier

45

Guidance
• Use standard data models developed by Communities of Interest (COI) as the basis of

program or project data models. [G1141]

• Develop a two-level database model; one level captures the conceptual or logical aspects,
and the other level captures the physical aspects. [G1144]

• The conceptual/logical data model should contain information necessary to generate a
data dictionary. [G1146]

• Domain analysis should define the constraints on input data validation. [G1147]

• The conceptual/logical model should be normalized. [G1148]

NESI Part 5: Net-Centric Developer's Guide

46

Best practices
• Use a database modeling tool that supports a two-level model (Conceptual/Logical and

Physical) and ISO-11179 data-exchange standards. [BP1143]

• Conceptual and logical models should be vendor-neutral whenever possible. [BP1145]

Data tier

47

RDBMS internals
A RDBMS is a collection of data items organized as a set of formally-described tables. You can
access and reassemble data in many different ways without having to reorganize the database
tables. It is important to ensure data quality and to access data quickly, using simple, easily
understood dynamic queries. Towards these ends, an RDBMS offers such services as triggers,
stored procedures, indices, constraints, referential integrity, efficient storage, and high
availability features.

Guidance
• Define declarative foreign keys for all relationships between tables. [G1151]

• Use stored procedures for operations that are focused on the insertion and maintenance of
data. [G1154]

• Use triggers primarily to enforce referential integrity or data integrity and not to perform
complex business logic. [G1155]

Best practices
• Follow a naming convention [BP1248]

o Do not use generic names for database objects such as databases, schema, users,
tables, views, or indices. [BP1249].

o Use case-insensitive names for database objects such as databases, schema, users,
tables, views, and indices. [BP1250]

o Separate words with underscores. [BP1251]

o Do not use names longer than 30 characters. [BP1252]

o Do not use the SQL:1999 reserved words as names for database objects such as
databases, schema, users, tables, views, or indices. [BP1253]

o For command and control systems, use the names defined in the C2IEDM for
data exposed to the outside communities. [BP1254]

• Use surrogate keys. [BP1255]

NESI Part 5: Net-Centric Developer's Guide

48

o Use surrogate keys as the primary key. [BP1256]

o Place a unique key constraint on the natural key fields. [BP1257]

• All data that are transferred using XML should explicitly define the encoding style.
[BP1258]

• Use indexes. [BP1259]

o All tables should have a primary key defined. This is generally enforced via an
underlying index. [BP1260]

o Monitor and tune indexes according to the response time during normal
operations in the production environment. [BP1261]

o In the case of Oracle, define indexes against the FK columns to avoid contention
and locking issues. [BP1262]

• Gather storage requirements in the planning phase, and allocate twice the estimated
storage space. [BP1263]

• To obtain high availability, use hardware solutions when geographic proximity permits.
[BP1264]

Data tier

49

XML
XML is a popular new technology that many developers are capitalizing on. For general
guidance, use one of the many XML developer’s guides available.

This section focuses on interfacing with other applications and enterprise components. It contains
the following topics:

• Wrapping XML parsers

• Parsing XML strategies

References
• For information on XML schemas and repositories, see

http://diides.ncr.disa.mil/mdregHomePage/mdregHome.portal.

• For information on the Department of the Navy's XML policies, see
http://quickplace.hq.navy.mil/navyxml or contact Bob Green, Office of the DON CIO,
robert.a.green2@navy.mil.

Wrapping XML parsers
Wrapping the parser promotes interoperability with other systems by reducing coupling and
minimizing the impact of enterprise change on the applications.

The enterprise will publish an API wrapper to an XML parser and an XSLT processor. All
applications using XML will use these wrapper classes. When they are available, you will be able
to download them from the NESI open-source site.

Examples

Sample wrapper class
This figure shows a sample wrapper class for an XML parser:
import java.io.*;
import org.w3c.dom.*;
import java.util.*;
import javax.xml.parsers.*;
public class XMLWrapper
{
 private Document document;
 public void initialize()
 { try
 { System.setProperty
 ("javax.xml.parsers.DocumentBuilderFactory",
 "org.apache.xerces.jaxp.DocumentBuilderFactoryImpl"
);
 System.setProperty
 ("javax.xml.parsers.SAXParserFactory",
 "org.apache.xerces.jaxp.SAXParserFactoryImpl"
);
 DocumentBuilderFactory dbf

NESI Part 5: Net-Centric Developer's Guide

50

 = DocumentBuilderFactory.newInstance();
 DocumentBuilder db = dbf.newDocumentBuilder();
 document = db.newDocument();
 } // End try
 catch (DOMException domex)
 { domex.printStackTrace();
 } // End catch DOMException
 catch (ParserConfigurationException pcex)
 { pcex.printStackTrace();
 } // End catch ParserConfigurationException
 }//end init
//public API’s
 public Node setRootNode
 (String rootElement)
 {
 try
 { Node rootNode = document.createElement(rootElement);
 document.appendChild(rootNode);
 return rootNode;
 } // End try
 catch (DOMException domex)
 { domex.printStackTrace();
 } // End catch DOMException
 return null;
 } // End setRootNode
 public Node addChild
 (Node parentNode, String element)
 { parentNode.appendChild
 (document.createElement (element));
 return parentNode.getLastChild();
 } // End addChild
 public void addTextNode
 (Node parentNode, String element)
 { parentNode.appendChild
 (document.createTextNode(element));
 } // End addTextNode
 public void addCommentNode
 (Node parentNode, String element)
 { parentNode.appendChild
 (document.createComment(element));
 } // End addCommentNode
 public void addCommentNodeDoc
 (String element)
 { document.appendChild
 (document.createComment(element));
 } // End addCommentNodeDoc
 public void addPINodeDoc
 (String target,
 String value
)
 { document.appendChild
 (document.createProcessingInstruction
 (target,
 value
)
);
 } // End addPINodeDoc

Data tier

51

 public void addPINode
 (Node parentNode,
 String target,
 String value
)
 { parentNode.appendChild
 (document.createProcessingInstruction
 (target,
 value
)
);
 } // End addPINode
 } // End initialize
}//end XMLWrapper

Sample object
This figure shows a sample object using the XML parser wrapper:
private static void buildXMLDocument()
{ //build up a weather report
 XMLCreator xmlCreator = new XMLCreator();
 xmlCreator.initialize();
 xmlCreator.addCommentNodeDoc
 ("generate xml from a soap client");
 xmlCreator.addPINodeDoc
 ("xml:stylesheet",
 "type = \"text/xsl\" href = \"weather.xsl\""
);
 Node weatherNode
 = xmlCreator.setRootNode
 ("weatherReport");
 xmlCreator.addTextNode
 (xmlCreator.addChild
 (weatherNode,
 "location"
),
 weatherReport[0]
);
 xmlCreator.addTextNode
 (xmlCreator.addChild
 (weatherNode,
 "wind"
),
 weatherReport[1]
);
 xmlCreator.addTextNode
 (xmlCreator.addChild
 (weatherNode,
 "SkyConditions"
),
 weatherReport[2]);
 xmlCreator.addTextNode
 (xmlCreator.addChild
 (weatherNode,
 "Visibility"
),

NESI Part 5: Net-Centric Developer's Guide

52

 weatherReport[3]);
 xmlCreator.addTextNode
 (xmlCreator.addChild
 (weatherNode,
 "Temperature"
),
 weatherReport[4]);
 xmlCreator.addTextNode
 (xmlCreator.addChild
 (weatherNode,
 "Pressure"
),
 weatherReport[5]);
 xmlCreator.addTextNode
 (xmlCreator.addChild
 (weatherNode,
 "Humidity"
),
 weatherReport[6]);
 xmlCreator.addTextNode
 (xmlCreator.addChild
 (weatherNode,
 "Wind2"
),
 weatherReport[7]);
 weatherDoc = xmlCreator.getDocument();
 }//end buildXMLDocument

Parsing XML strategies
Passing XML back and forth between systems imposes significant overhead. As more client-side
applications use “services,” parsing multiple XML outputs from multiple web services will
impact the performance of the client-side application.

Data tier

53

Best practices
• The XML document generator is responsible for validating the XML. [BP1265]

References
Won Kim. Introduction to Object-Oriented Databases. Computer Systems. MIT Press,
Cambridge, MA, 1990.

Application Architecture: An N-Tier Approach - Part 1:
http://www.15seconds.com/issue/011023.htm

SQL:1999, formerly known as SQL3: http://dbs.uni-leipzig.de/en/lokal/standards.pdf

Database Journal: http://www.databasejournal.com/

Crossing Chasms Pattern Language Object to RDBMS: http://c2.com/cgi/wiki?CrossingChasms

Object Data Management Group (ODNG): http://www.odmg.org/

Object Management Group (OMG): http://www.omg.org/

Native XML database vendors: http://www.rpbourret.com/xml/XMLDatabaseProds.htm#native

C2IEDM data model specifications: http://www.mip-
site.org/MIP_Specifications/Baseline_2.0/C2IEDM-C2_Information_Exchange_Data_Model/

55

Networks and enterprise services
This section contains information on the following topics:

• Discovery

• Quality of Service

Future guidance will include:

• Admin/management framework: Includes remote monitoring, remote software
upgrades, OPS, etc.: all the tools necessary to support content addition, subtraction, and
modification.

• Application instantiation/lifecycle framework: Describes how applications come and
go from the enterprise.

• Authentication schemes: Web authentication, enterprise authentication, PKI, smart
cards, Single Sign-On.

• Certifications: SSAAs for services, service IATOs, and ATOs.

• Connecting to enterprise and NCES components

• Design patterns and examples: Recommended patterns and implementations.

NESI Part 5: Net-Centric Developer's Guide

56

• Directory: JNDI, LDAP, Active Directory.

• Enterprise management

• LDAP: Using LDAP for realms, directory service replication, Active Directory
connections.

• Load balancing strategies: Server configurations to support enterprise services.

• Mobile code policy: Guidelines on developing mobile code within the DoD Mobile Code
policy.

• OS setup/configuration: Lessons learned on various operating systems that the DoD
uses.

• Quality of Service (QoS)

• Resource management: Load balancing, caching, and availability strategies.

• Security: XML and coding standards

• Security guidelines: Authentication schemes, secure coding practices, digital
certificates, digital signatures, firewall polices, protection mechanisms, and SSL.

Note that this guidance may be moved to other sections of the NESI documentation, as
appropriate.

Networks and enterprise services

57

Discovery
This section covers:

• User registries, which are defined as directory services

• Service registries, which are defined as UDDI APIs to RDBMS

Discovery and Directory are a set of repositories and tools for accessing information about
people, components, metadata, content, and services from wherever they are, not just from a
single machine. These repositories are based on the ability to find people, content, and services
using metadata. The Discovery and Directories services perform important but distinct functions
in the architecture.

• Discovery component provides the repository for published services.

• Directory component provides the repository of information concerning people, their
roles, organizations, and associated credentials. The directory component is the
technology that supports the discovery function.

Directory
A directory is:

• A service that allows the search of a structured repository of information

• A special-purpose database

• Defined by how users interact with it through its protocol and its APIs

• Used in a context where data are retrieved much more frequently than they are updated

• Not designed to store very large objects, but rather, very large numbers of objects

• Not a relational database

The main differences between a directory and a relational database are:

• Directories are generally intended for environments in which there are more read and
search operations than updates.

• Directories do not support the advanced relational queries of a relational database.

• Directories do not support transactional integrity across multiple operations.

• Directories have better support for approximate match searches.

• Directories usually have preconfigured schemas.

• Directory protocols are better suited for WAN use.

• Directories are smaller to maintain and are less expensive.

The rest of this section describes the following protocols and APIs for directories:

• LDAP: a protocol for accessing a directory.

• JNDI: a layer on top of LDAP that enables directories to talk to each other.

NESI Part 5: Net-Centric Developer's Guide

58

Lightweight Directory Access Protocol (LDAP)
Lightweight Directory Access Protocol is an Internet protocol that programs use to look up
contact information from a server. LDAP was designed at the University of Michigan to adapt a
complex enterprise directory system (called X.500) to the modern Internet. A directory server
runs on a host computer on the Internet, and various client programs that understand the protocol
can log into the server and look up entries.

LDAP is a hierarchical directory structure accepted through most of the industry. LDAP
directories provide a repository for lookup. Security services may also use LDAP directories.
Portals and web services use these to maintain user and organizational information, as well as
access control and cryptographic certificate information.

Example: Java JNDI to LDAP
This example shows how Java can use JNDI to search for users. To run this example:

• Install JDK 1.4

• Install the Netscape directory server package

• Add JDK and the Netscape package to the classpath.

To search for users with JNDI:
1. During Netscape directory server installation, note the configurations for port, username,

host, admin user name, and password, as shown in the figures below.

Networks and enterprise services

59

NESI Part 5: Net-Centric Developer's Guide

60

2. Add a user with the Netscape Directory Console.

3. Build a JNDI client that dumps out all the user attributes. The code appears in the sample

below.

4. Use a configuration file (properties or XML) to store all dynamically configurable
settings. Store the following code in a file named config.properties.
initialContextFactory=com.sun.jndi.ldap.LdapCtxFactory
providerUrl=ldap://localhost:389
contextName=dc=spawar,dc=navy,dc=mil

Note: In this example, the location of the config file is determined through an
command line argument. In a J2EE or web environment, these configuration
properties would be addressed in a deployment descriptor.

JNDI client
import javax.naming.*;
import javax.naming.directory.*;
import java.util.*;
import java.io.*;
public class FindUser
{
 public static void main(String args[])
 throws Exception
 {
 if(args.length < 2)
 {
 System.out.println("Usage: java FindUser <Config File> <User
Name>");
 System.exit(0);
 }
 Properties configSettings = loadConfigurationFile(args[0]);
 if(configSettings == null)
 {

Networks and enterprise services

61

 System.out.println("Failed to load configuration file: " +
args[0]);
 System.exit(1);
 }
 Hashtable env = new Hashtable();
 env.put(Context.INITIAL_CONTEXT_FACTORY,
 configSettings.getProperty("initialContextFactory"));
 env.put(Context.PROVIDER_URL,
 configSettings.getProperty("providerUrl"));
 DirContext ctx = new InitialDirContext(env);
 SearchControls ctls = new SearchControls();
 ctls.setSearchScope(SearchControls.SUBTREE_SCOPE);
 NamingEnumeration results =
 ctx.search(configSettings.getProperty("contextName"),
 "cn=" + args[1], ctls);
 while(results.hasMore())
 {
 SearchResult searchResults = (SearchResult)results.next();
 System.out.println(searchResults.getName());
 Attributes attrs = searchResults.getAttributes();
 if(attrs != null)
 {
 for(NamingEnumeration enum = attrs.getAll(); enum.hasMore();)
 {
 Attribute attrib = (Attribute)enum.next();
 System.out.print(attrib.getID() + "=");
 for(NamingEnumeration e = attrib.getAll();e.hasMore();)
 System.out.print(e.next() + " ");
 System.out.println("");
 }
 }
 }
 ctx.close();
 }
 private static Properties loadConfigurationFile(String filename)
 {
 File configFile = new File(filename);
 if(configFile.exists() == false)
 {
 return null;
 }
 else
 {
 try
 {
 Properties config = new Properties();
 config.load(new FileInputStream(configFile));
 return config;
 }
 catch(Exception e)
 {
 return null;
 }
 }
 }
}

NESI Part 5: Net-Centric Developer's Guide

62

Java Naming & Directory Interface (JNDI)
The Java Naming and Directory Interface (JNDI) is an API for directory services in a J2EE
environment. It allows clients to discover and look up data and objects using a name. JNDI is
portable and independent of the actual implementation. Additionally, it specifies a service
provider interface (SPI) that allows directory service implementations to be plugged into the
framework. The JNDI service implementations are hidden from the user, and may make use of a
server, a flat file, or a database. The choice is up to the JNDI provider.

Guidance
• Connections to the enterprise (e.g., LDAP, JNDI, JMS, databases) should use vendor-

neutral interfaces. [G1071]

• J2EE applications should isolate tailorable data values into the deployment descriptor.
[G1079]

o Define all external resources by using a separate resource-ref element for each
resource. [G1200]

o Define configuration data such as environment variables, parameters, and
properties by using resource-env-ref elements. [G1201]

Best practices
• If using Java-based messaging (e.g., JMS), register destinations in JNDI so message

clients can use JNDI to look up these destinations. [BP1116]

Examples
// Create a hashtable that contains the parameters used to initialize
JNDI.
Hashtable contextParams = new Hashtable();
// Specify the context factory to use. The context factory is provided
by the
// implementation.
contextParams.put(Context.INITIAL_CONTEXT_FACTORY,
"com.jnidprovider.ContextFactory");
// The next parameter is the URL specifying the location of the JNDI
provider's data store
contextParams.put(Context.PROVIDER_URL, "http://jndiprovider-database"
);
// Create the JNDI provider’s context.
Context navyCurrentContext = new InitialContext (contextParams);
// Look up the desired bean using its full name.
Object reference = navyCurrentContext.lookup ("mil.us.navy.NavyBean"
);
// Cast the located bean to the desired type.
MyBean navyBean = (NavyBean) PortableRemoteObject.narrow (

Universal Description, Discovery, and Integration (UDDI)
Universal Description, Discovery, and Integration is a service registry that defines a standard
way to publish and discover information about XML web services. The XML schemas associated

Networks and enterprise services

63

with UDDI define four types of information that would enable a developer to use a published
XML web service.

For UDDI guidance, see UDDI guidance in the web services guidance section.

References
http://docs.sun.com/source/816-6696-10/dirintro.html

http://raleigh.pm.org/ldap-talk.html

http://www.gracion.com/server/whatldap.html

http://java.sun.com/products/jndi/overview.html

NESI Part 5: Net-Centric Developer's Guide

64

Quality of Service (QoS)
Overview
Quality of Service (QoS) refers to a network’s ability to provide better service to selected
network traffic. This requires sufficient network resources (computing resources, storage, buffer
space, communication bandwidth, etc.) to ensure that the selected traffic meets its requirements
for throughput, latency, jitter, and data loss.

Effective implementation of QoS requires the cooperation and participation of all components in
the network that implement traffic management and control functions. QoS traffic management
techniques include:

• Classification

• Compression

• Packet shaping and TCP optimization

• Prioritization

• Differentiated services

• Integrated services and policing

Differentiated and guaranteed services
The two most prevalent types of QoS services are differentiated and guaranteed services. This
section discusses QoS capability as differentiated services, priority, packet shaping,
compressions, and TCP optimization.

Guaranteed services will not be addressed at this time because RSVP will not be supported. This
is because the HAIPIS specification does not allow passing of the RSVP signaling from the red to
black side, and thus it is not available for use in the black core. Applications will not be able to
use RSVP in this environment.

Implementations
Most QoS traffic management techniques are implemented using the information in the traffic’s
IP packet header. This could include:

• IPv4 source and destination addresses

• IPv4 DSCP field (or IP-precedence field or TOS field)

• IPv6 source and destination addresses (plus associated masks)

• IPv6 traffic class field

• IPv6 flow label field

• IPv6 next header field

The DSCP field supports differentiated services. This field consists of a 6-bit value used to
determine QoS capability. This packet value is set or marked using network components such as
packet shaper. Packet shaper provides packet marking/shaping, optimization and compression.

Networks and enterprise services

65

Inspecting and applying predetermined rules for the handling of the packet make QoS routing
decisions.

The source and destination addresses, the IPv4 DSCP/TOS field, IPv6 traffic class, and the IPv6
flow label fields are the only fields that the hosts and applications need to specify to implement
QoS in future GIG architectures. The use of the IPv6 flow label field is still under development
by the IETF. It may be used for path control.

References
• RFC 1633, "Integrated Services in the Internet Architecture: an Overview,” June 1994.

• RFC 2211 “Controlled-Load Network” and RFC 2212 “Guaranteed Quality of Service”
describe services that a network can provide and the mechanisms it would use.

• RFC 2386, "A Framework for QoS-Based Routing in the Internet,” August 1998.

• RFC 791. Internet Protocol Specification

• RFC 1809, “Using the Flow Label Field in IPv6”

• RFC 2460, “Internet Protocol, Version 6 (IPv6) Specification”

• http://www.cisco.com/univercd/cc/td/doc/cisintwk/ito_doc/qos.htm#1020563

• http://www.cisco.com/warp/public/732/Tech/qos/

67

Communications and transport
This section contains information on the following topics:

• Joint Tactical Radio System (JTRS)

Future guidance will include:

• Design patterns and examples: Recommended patterns and implementations

• HAIPE

• IPv6/IPv4: Migrating to IPv6; IPv6 and IPv4 coexistence.

• Software radio: Developer guidelines for the Joint Tactical Radio System (JTRS) and
Software Communication Architecture (SCA).

Note that this guidance may be moved to other sections of the NESI documentation, as
appropriate.

NESI Part 5: Net-Centric Developer's Guide

68

Joint Tactical Radio System (JTRS)
This section describes the Joint Tactical Radio System (JTRS) Software Communications
Architecture (SCA).

Overview
A software-defined radio includes a transmitter in which you can alter the operating parameters of
the transmitter by changing only the software without making any hardware changes. The
operating parameters include the frequency range, modulation type, and maximum radiated or
conducted output power.

The Software Communication Architecture (SCA) is a complex specification with several
different interfaces. The diagram below shows the primary SCA interfaces. An interface is an
important concept. The interface is the only exposure of a software component to the outside
world. Components in the system can only execute the operations defined in the interface
definition.

Primary SCA interfaces

Communications and transport

69

Member variables
Member variables are not exposed to the outside world. To explain this, consider the device
interface shown in the diagram. It provides an interface with both attributes and operations. (The
attributes are the first compartment and operations listed in the second compartment.) It is easy to
make the erroneous association of CORBA attributes to C++ member variables and CORBA
operations to C++ operations. In CORBA, both attributes and operations are operations.
Attributes have implicit set and query operations. Again using the device interface in the diagram
as an example, the label attribute has implicit operation signatures:

• label(in listString:string):void

• label(void):string.

The software component is responsible for providing the internal storage variable for the label
string. It is not directly available to the outside world. The CORBA interface provides the implicit
operations for changing the variable.

In contrast, the allocateCapacity() operation of the device interface has a defined function
signature instead of the implicit signatures of attributes. Since operations have improved
exception handling capability, many programmers use only operations in an interface definition.
However, the SCA uses both attributes and operations in some interfaces.

Resource interface
An important interface for SCA components is the resource interface. As shown in the diagram, it
inherits interfaces from four other interfaces:

• TestableObject

• PortSupplier

• LifeCycle

• PropertySet

The resource interface is inherited by both applications and hardware devices. Because of its
importance, the example in this section will define a software component that inherits the
resource interface. It could inherit other interfaces, but this would add complexity without
providing further insight into the development of SCA components.

Composition of a JTRS radio
The following diagram shows a simple JTRS radio composition. The basic concept of JTRS is to
define the Application Program Interface (APIs) of all the software elements within the radio
using the JTRS Software Communications Architecture (SCA). The APIs define the input/output
parameters of the software operations and the expected behavior.

NESI Part 5: Net-Centric Developer's Guide

70

Composition of a JTRS radio

Hardware
As shown in the diagram, the JTRS radio has a hardware set that provides the processing,
cryptographic, and RF resources required to instantiate military waveforms. The hardware
supports an operating system which is specified in the SCA as an approximate equivalent to the
IEEE-defined POSIX PSE-52.

CORBA middleware
The CORBA middleware provides the messaging services used to interconnect software
components of applications and waveforms. CORBA utilizes TCP/IP to send messages between
components (objects) and uses the Interface Definition Language (IDL) to specify the interfaces
for the objects.

Core Framework
The Core Framework in the diagram can be considered a specialized operating system for radios
that executes on top of the native operating system. It provides specific functionality such as the
application factory, which can:

• Read the XML-based domain profiles

• Determine from the XML which radio resources are required for a waveform

• Load/instantiate all of the required components for a waveform

The interconnection of the software components is completely dynamic and directed by the
connections defined in the domain profiles.

Communications and transport

71

Software
All software within JTRS is both SCA- and CORBA-compliant. This enables more flexibility and
scalability than any previous generation of radios. A complete JTRS software architecture is
shown in the following diagram. The lower portion of the diagram represents the CORBA, Core
Framework, and operating system. This functionality is provided by the JTR set and is named the
Application Environment Profile (AEP). Through the SCA specifications and CORBA
messaging, all of the software in the upper layers should be able to execute upon any JTR set.

JTRS software architecture

Component placement
• The CORBA middleware allows software components to be distributed anywhere within

the radio.

• The Core Framework provides distributed object launchers for each processor board
within the set.

• The radio’s application factory launches a waveform or application by providing the
object files and execution parameters to the various processors within the radio.

The following diagram shows the configuration after these components are launched.

NESI Part 5: Net-Centric Developer's Guide

72

XML within the JTRS radio set

After the objects are instantiated, they may be co-located, or distributed among the different
processing elements within the radio. These objects do not have any knowledge of other
application objects or the hardware resources within the radio.

A set of XML files is associated with each software and hardware object. These files provide
information about the objects, including their port references. The application factory parses these
files along with an application schematic file, the Software Assembly Descriptor (SAD). The
SAD provides the necessary information to connect the hardware and software components
together.

Dynamic software configuration
The following diagram shows two software components of a waveform within a JTRS radio. As
depicted, the two software components have port objects which are dynamically connected by the
Core Framework’s application factory. After connection, the CORBA middleware allows the two
objects to pass data or send control information. Because CORBA provides distributed processing
the two software components in the diagram can actually reside in different processors within the
radio.

Two software components within a JTRS radio

Communications and transport

73

The software components shown in the diagram function as adapters (drivers) for the hardware
components. By providing CORBA adapters for the hardware components, every hardware item
and software component can communicate and be controlled via CORBA within the JTRS radio.

The following diagram illustrates a simple waveform within a JTR set. The oval objects represent
software components, and the rectangular objects represent hardware items.

Waveform within a JTR set

Hardware configuration
The SCA does not specify a particular hardware configuration. However, one of the requirements
for SCA certification is that the waveform must be ported successfully to a government test
platform. These test platforms have a configuration similar to that shown in the following
diagram. As would be expected, most waveform software is being designed for such a
configuration.

NESI Part 5: Net-Centric Developer's Guide

74

“Non-Standard” JTRS architecture

The DAC and A/D in this diagram connect directly to the RF hardware. Most previous military
radios had a specialized downconverter and modulator integrated circuits. With the non-standard
JTRS configuration shown here, the waveform developers must provide FPGA code that can
perform the function of operating directly with the A/Ds and D/As. The hardware does not
provide direct digital synthesizers and upsamplers typical in previous radios. The waveform
designer must provide that functionality in specialized FPGA code that constitutes part of the
delivered waveform.

Example: SCA-compliant software component
This “Hello SCA” example demonstrates a simple but encompassing development of a SCA-
compliant software component on a Windows 2000 platform. This example uses the Rational
Rose model of the defined SCA Core Framework to generate the IDL for the software
component. It was built using Microsoft Visual C++.

For this example, you need to:

• Install ACE ORB

• Set the ACE_ROOT environment variable to the ACETAO installation directory

• Change the system Path variable to include %ACE_ROOT%\bin. For more information,
see the TAO Developer’s Guide (Object Computing, Inc., Version 1.1a, ociweb.com,
2000).

The activity diagram of the development process appears below.

Overview of example
This example involves the following actions:

1. Reverse-engineer the Core Framework Interface Definition Language (IDL)

2. Generate the Rational Rose interfaces.

Communications and transport

75

3. Design a simple software object.

4. Add the interfaces to the software object.

5. After completing the object design, generate a new IDL that provides the new object’s
interface.

6. Take the new IDL and generate skeleton and stub code with the ACE/TAO IDL
compiler.

7. Add the object-specific C++ code for the client and server.

8. Execute the objects on a desktop personal computer.

Develop the Rose model
1. Open the Rose Model Browser.

2. Create a new package named Hello SCA by right-clicking on the logical package in the
model browser on the left-hand side of the window.

3. Open the new package by double-clicking on it, and then right-click again on the
package.

4. Create a new class diagram named Security Component.

5. Double-click Security Component in the browser window to open the window.

6. Open the Tools > CORBA > Specification menu, as shown below, and specify this
folder so that Rose can find the cf.idl file.

7. Using the Insert button in the Specification menu, insert the directory containing the

cf.idl file. Click OK.

NESI Part 5: Net-Centric Developer's Guide

76

8. Open the Tools > CORBA > Reverse Engineer menu and select the file to be reverse-

engineered. The Reverse Engineer window opens.

9. Select the cf.idl file in the lower window and click Reverse to reverse engineer the cf.idl
file. This automatically generates a package <<CORBA Module>>CF under the logical
view in the Rose browser. Click Done.

Communications and transport

77

The following screen shows how the reverse engineering created the Core Framework (CF)
module in the Rose Model Browser. Note that all of the different Core Framework interfaces
(such as AggregateDevice) are defined in the browser and can now be added into a model
diagram.

Core framework

Construct the software component’s class diagram
1. Select the Class icon in the center vertical bar of the Rose window.

2. Click anywhere in the right-hand window. An unnamed class object appears in the
diagram.

3. Double-click the class object and enter <<Interface>>SecurityX. This defines a
CORBA interface named SecurityX.

4. Right-click the SecurityX interface and select New Attribute. Enter
securitySetting:long.

5. Scroll in the left-hand browser window to the <<CORBA Module>>CF package and
double-click the package. The following window appears.

NESI Part 5: Net-Centric Developer's Guide

78

6. Find the Resource interface in the browser window and drag it into the window.

7. Select the generalization arrow (solid line with hollow head). In the class diagram
window, click and drag from the SecurityX interface to the Resource interface. Now the
inherited interfaces of Resource can also be shown in the diagram.

8. Drag the LifeCycle, TestableObject, PortSupplier, and PropertySet interfaces into the
window. Note that the inheritance arrows are generated automatically from the
associations contained in the core framework file.

The following diagram shows the UML model of the software component. This is the
class diagram, which represents a static view of the component. Note that the SecurityX
component inherits the Resource interface previously defined in the Core Framework.
Because of inheritance, the other interfaces inherited by the Resource interface are
automatically included in the definition of the SecurityX component.

Communications and transport

79

9. Right-click the SecurityX component and select CORBA > Generate Code, as shown
below.

A second menu appears.

NESI Part 5: Net-Centric Developer's Guide

80

10. Select the desired directory in the left window and the package in the right window. Click

Assign.

Code generation begins and a window alert indicates "Code Generation Completed Successfully."
Rational Rose has generated a new folder in the selected directory titled Hello SCA and placed
the file, SecurityX.idl, within it.

Develop the Visual C++ project
The following topics explain how to develop the Visual C++ project.

The IDL file generated by the Rational Rose CORBA compiler is not executable code. It
resembles a .h header file instead of a .cpp source file. In this next section you will prepare a
Hello SCA project to generate and execute the example. The example borrows liberally from the
TAO Developer’s Guide (Object Computing, Inc., Version 1.1a, http://www.ociweb.com, 2000) in
describing the Visual C++ project.

Configure Visual C++
1. Open the Visual C++ IDE File menu and select New. A New dialog box opens.

2. Select the Workspaces tab.

3. For the Workspace name, enter Hello SCA.

4. For the location, select the directory previously used for the Rational Rose Hello SCA
model.

Generate the interface project
In this step, you will set up the workspace, then relocate some files.

1. In the left-hand browser window, there is a single workspace icon labeled Workspace
‘Hello SCA’:0 file(s). Right-click the icon to add another project to the workspace. A
New dialog box appears.

2. Select Win32 Static Library, and enter a project name of Interface.

3. Before closing the dialog box, edit the Location text box. In the sample dialog box
shown below, Visual C++ would automatically create a new directory called Interface,
which would cause some problems with linking. To avoid this, delete the /Interfaces
appendix to the directory in the Location text box.

Communications and transport

81

4. Click OK. A Win32 Static Library wizard appears.

5. Click Finish without selecting either of the options. A New Project Information dialog
box appears.

6. Click OK. The Visual C++ Workspace window appears and shows the interface project.

Creating the Win32 Static Library enables you to compile all of the Core Framework interfaces
into a library that you can link with the server and client projects. This isolates the various files
and serves as a model for larger projects.

Generate the client project
In this step, you create a new project within the same workspace for the client.

NESI Part 5: Net-Centric Developer's Guide

82

1. In the left-hand browser window, there is a single workspace icon labeled Workspace
‘Hello SCA’:1 file(s). Right-click the icon to add another project to the workspace. A
New dialog box appears.

2. Select Win32 Console Application, and enter a project name of Security Client.

3. Edit the Location text box. In the sample dialog box shown below, Visual C++ would
automatically create a new directory called Security Client, which would cause some
problems with linking. To avoid this, delete the /Security Client appendix to the
directory in the Location text box. Click OK.

Generate the server project
To host the SCA object, you must create an additional project for the server.

1. In the left-hand browser window, there is a single workspace icon labeled Workspace
‘Hello SCA’:2 file(s). Right-click the icon to add another project to the workspace. A
New dialog box appears.

2. Select Win32 Static Library, and enter a project name of Security Server.

3. Edit the Location text box. Left as is, Visual C++ would automatically create a new
directory called Security Client, which would cause some problems with linking. To
avoid this, delete the /Security Client appendix to the directory in the Location text box.

4. Click OK. A New dialog box prompts you to enter the type of application you wish to
create.

5. Click Finish to select the default empty application. A New Project Information dialog
box appears.

6. Click OK.

Configure Visual C++ for the ACE/TAO compiler
In this step, you will modify the Visual C++ settings for the ACE/TAO compiler and establish
paths for the Visual C++ linker.

1. Open the Tools > Options > Directories menu.

2. Open the Show directories for drop-down and select Include Files.

Communications and transport

83

3. Inside the Directories list box, enter:

C:\ACE_wrappers
C:\ACE_wrappers\TAO
C:\ACE_wrappers\TAO\tao
C:\ACE_wrappers\TAO\orbsvcs
C:\ACE_wrappers\TAO\orbsvcs\orbsvcs

4. Open the Show directories for drop-down and select Executable Files.

5. Inside the Directories list box, enter:

C:\ACE_wrappers\bin

Configure the Visual C++ project settings
In this step, you configure the workspace.

1. Open the Projects > Settings menu.

2. Open the Settings for drop-down and select Win32 Debug.

NESI Part 5: Net-Centric Developer's Guide

84

3. Select all three projects in the workspace, as shown below.

4. Select the General tab. As shown above, enter Debug in the Intermediate files and

Output files text boxes.

5. Select the C/C++ tab. Open the Category drop-down and select Code Generation.

6. Open the Use run-time library drop-down and select Multithreaded DLL.

7. Select the Security Client and Security Server projects in the left-hand browser window.

8. Select the Link tab. Enter aced.lib and TAOd.lib in the Object/library modules text
box.

Communications and transport

85

Add the Rational Rose IDL files to the project
1. Verify that the two IDL files generated by Rational Rose are located in the same

directory as the Hello SCA Visual C++ project.

2. Click the Interface Files project in the left-hand browser window to expose the Source
and Header folders.

3. Right-click Interface Files: Source Files and select Add Files to Folder. Select the cf.idl

and SecurityX.idl files generated earlier with Rational Rose. It may be necessary to
move the files to the correct directory with Windows Explorer.

NESI Part 5: Net-Centric Developer's Guide

86

4. Select both files, located under Source Files, and right-click to adjust the settings.

5. Open the Settings for drop-down and select Win32 Debug.

6. Select the Custom Build tab.

7. In the Description text box, clear the previous text and enter:

Executing ACE/TAO Compiler on $(InputPath).

8. In the Commands box, enter:

$(ACE_ROOT)\bin\tao_idl.exe _GI $(InputPath).

9. In the Outputs box, enter:
$(InputName)C.cpp
$(InputName)C.h
$(InputName)C.i
$(InputName)S.cpp
$(InputName)S.h
$(InputName)S.i
$(InputName)S_T.cpp
$(InputName)S_T.h
$(InputName)S_T.i

The completed window should be similar to the screen shown above.

Use the ACE/TAO compiler to generate skeletons and stubs
In this step, you use the TAO compiler linked into the Visual C++ environment to automatically
generate stub and skeleton code. The following diagram shows the process of automatically
generating the code for the component implementation.

Communications and transport

87

Automatic code generation

To generate files with the ACE/TAO compiler:
1. Right-click the cf.idl file and select Compile cf.idl. Because you set up the file for a

custom build, the ACE/TAO compiler executes and generates all of the files you need for
subsequent steps.

2. Right-click the SecurityX.idl file. Again, the ACE/TAO compiler executes and generates
the necessary files.

3. Because the IDL compiler could be accidentally executed and overwrite the manual code
changes you will subsequently make, follow the naming conventions suggested by
http://www.ociweb.com. Change these file names:

• cfI.cpp to cf_i.cpp

• cfI.h to cf_i.h

• SecurityXI.cpp to SecurityX_I.cpp

• SecurityXI.h to SecurityX_i.h

To add the generated stubs and skeletons to the interface project:
1. Right-click Interface files: Source Files in the left-hand browser window and select Add

Files to Folder.

2. Add these files, as shown in the window below:

• cfS.cpp

• cfC.cpp

• SecurityXS.cpp

NESI Part 5: Net-Centric Developer's Guide

88

• SecurityXC.cpp

3. Create the Interface static library by right-clicking Interface Files in the browser window

and selecting Build.

The Visual C++ compiler compiles the four files you just added to the project and builds
the Interface library. The client and server projects use this library to access the required
Core Framework code. To allow the Client and Server projects to access this library, you
must adjust the project dependencies.

4. Open the Project > Dependencies menu.

5. Open the Select project to modify drop-down and select Security Client. In the check
boxes under Dependent upon the following project(s), select the box next to
Interfaces.

6. Open the Select project to modify drop-down and select Security Server. In the check
boxes under Dependent upon the following project(s), select the box next to
Interfaces.

Develop the client
In an actual radio, you would not need to develop a specific client for the SCA object; the
waveform application or one of its components would perform the function of client. This
example however, demonstrates how the object operates without requiring a complete waveform
infrastructure.

The complete file listing of SecurityClient.cpp is shown below. Review the comments for
additional insight into the development of SCA-compliant code.
// SecurityClient.cpp : Defines the entry point for the console
application.
//
#include "SecurityXC.h"
#include "cfC.h"

Communications and transport

89

#include <ace/streams.h>

int main(int argc, char *argv[]){
 CORBA::Long userSecurityLevel;
 CORBA::Object* objectReference;
 char objectName$[15];
 strcpy(objectName$,"JTeL");

 try{
 // Initialize the Orb
 CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);

 // Convert the contents of the file to an object reference.
 CORBA::Object_var obj = orb-
>string_to_object("file://Security.ior");
 if(CORBA::is_nil(obj.in())){
 cerr<<"Nil Security reference"<<endl;
 throw 0;
 }

 // Narrow the object reference to a Security object
reference
 SecurityX_var security = SecurityX::_narrow(obj.in());
 if(CORBA::is_nil(security.in())){
 cerr<<"Not Security object reference" <<endl;
 throw 0;
 }

 // Generate the Properties reference and values needed for the
 // runTest operation. IMPORTANT!!! These variables must be
declared
 // after the ORB is initialized. Otherwise, the ORB will crash!
 CF::Properties_var parameters;
 parameters = new CF::Properties;
 parameters->length(1);
 (*parameters)[0].id = CORBA::string_dup("SPAWAR");
 // Observe the machinations necessary to define a parameter into
the
 // "any" type definition of DataType! Note the insertion operator
 // is used to "place" a value in the any field.
 (*parameters)[0].value <<= (CORBA::Long) 3;

 cout<<"Initial Security Rating"<<endl;

 cout<<security->securitySetting()<<endl;

 cout<< "Increase Security Rating by how much?"<<endl;

 cin>> userSecurityLevel;

 security->securitySetting(userSecurityLevel);

 cout<<"New Security Rating"<<endl;

 cout<<security->securitySetting()<<endl;

 security->runTest(5, *parameters);

NESI Part 5: Net-Centric Developer's Guide

90

 objectReference = (CORBA::Object*) 0x003;
 objectReference = security->getPort(objectName$);

 cout<<"ObjectReference = "<<objectReference<<endl;

 // Release resources
 orb->destroy();
 }
 catch(const CORBA::Exception &ex){
 cerr<<"Caught a CORBA exception: " << ex <<endl;
 return 1;
 }
 cout<< "Message was sent" << endl;
 return 0;
}

Set up the client project
1. Copy the SecurityClient.cpp file to the working Visual C++ directory.

2. Right-click Security Client: Source Files in the left-hand browser window and select Add
Files to Folder. Select SecurityClient.cpp.

3. Right-click the Security Client project icon in the browser window and select Build.

Visual C++ compiles, links, and builds the executable for the client that you will use to
demonstrate the security object.

Set up the server project
The server project is a little more complex, because you must provide develop the Security object
and provide a host for it. Recall that when you compiled the IDL files, you generated skeleton
files for the Core Framework and SecurityX object. The skeleton provides the C++ starter code
for the project, but you must provide the code to implement the methods.

Sample file listing for skeleton
You may add additional or different implementations. Notice that several of the methods have
specific code by the comment //Add your implementation here indicated by the
ACE/TAO compiler.

You must edit the file generated by the ACE/TAO compiler to match the file listing below.
// -*- C++ -*-
//
// Id
// **** Code generated by the The ACE ORB (TAO) IDL Compiler ****
// TAO and the TAO IDL Compiler have been developed by:
// Center for Distributed Object Computing
// Washington University
// St. Louis, MO
// USA
// http://www.cs.wustl.edu/~schmidt/doc-center.html
// and
// Distributed Object Computing Laboratory
// University of California at Irvine

Communications and transport

91

// Irvine, CA
// USA
// http://doc.ece.uci.edu/
//
// Information about TAO is available at:
// http://www.cs.wustl.edu/~schmidt/TAO.html
#include "SecurityX_i.h"
// Implementation skeleton constructor
SecurityX_i::SecurityX_i (void)
 {
 //Add your implementation here
 cout<<" ---"<<endl;
 cout<<"Beginning SecurityX object constructor"<<endl;
 securityRating = 0;
 }
// Implementation skeleton destructor
SecurityX_i::~SecurityX_i (void)
 {
 }
CORBA::Long SecurityX_i::securitySetting (
)
 ACE_THROW_SPEC ((
 CORBA::SystemException
))
 {
 //Add your implementation here
 cout<<" ---"<<endl;
 cout<<"Beginning implicit securitySetting query"<<endl;
 //Add your implementation here
 return (securityRating);
 }
void SecurityX_i::securitySetting (
 CORBA::Long securitySetting
)
 ACE_THROW_SPEC ((
 CORBA::SystemException
))
 {
 //Add your implementation here
 cout<<" ---"<<endl;
 cout<<"Beginning implicit securitySetting set"<<endl;
 securityRating += securitySetting;
 }
char * SecurityX_i::identifier (
)
 ACE_THROW_SPEC ((
 CORBA::SystemException
))
 {
 char* badIdea = "bad programming";
 return badIdea;
 }
void SecurityX_i::start (
)
 ACE_THROW_SPEC ((
 CORBA::SystemException,
 CF::Resource::StartError

NESI Part 5: Net-Centric Developer's Guide

92

))
 {
 //Add your implementation here
 cout<<" ---"<<endl;
 cout<<"Beginning start Operation"<<endl;
 securityRating = 10;
 }
void SecurityX_i::stop (
)
 ACE_THROW_SPEC ((
 CORBA::SystemException,
 CF::Resource::StopError
))
 {
 //Add your implementation here
 cout<<" ---"<<endl;
 cout<<"Beginning stop Operation"<<endl;
 securityRating = -1;
 }
void SecurityX_i::initialize (
)
 ACE_THROW_SPEC ((
 CORBA::SystemException,
 CF::LifeCycle::InitializeError
))
 {
 //Add your implementation here
 cout<<" ---"<<endl;
 cout<<"Beginning initialize Operation"<<endl;
 securityRating = 1;
 }
void SecurityX_i::releaseObject (
)
 ACE_THROW_SPEC ((
 CORBA::SystemException,
 CF::LifeCycle::ReleaseError
))
 {
 //Add your implementation here
 cout<<" ---"<<endl;
 cout<<"Beginning releaseObject Operation"<<endl;
 cout<<"We would have released an object if we had one!"<<endl;
 //Add your implementation here
 }
void SecurityX_i::runTest (
 CORBA::ULong testid,
 CF::Properties & testValues
)
 ACE_THROW_SPEC ((
 CORBA::SystemException,
 CF::TestableObject::UnknownTest,
 CF::UnknownProperties
))
 {
 //Add your implementation here
 cout<<" ---"<<endl;
 cout<<"Beginning runTest Operation"<<endl;

Communications and transport

93

 cout<<"Received Test ID: "<<testValues[0].id<<endl;
 // Because the test properties is an "any" field, we do not know
 // the actual data type a priori. To work around this, we use
 // the extraction operators of the any class.
 CORBA::Long receivedValueL;
 CORBA::Short receivedValueS;
 if(testValues[0].value>>=receivedValueL)
 {
 cout<<"Received Test Parameter: "<<receivedValueL<<endl;
 }
 if(testValues[0].value>>=receivedValueS)
 {
 cout<<"Received Test Parameter: "<<receivedValueS<<endl;
 }
 }
void SecurityX_i::configure (
 const CF::Properties & configProperties
)
 ACE_THROW_SPEC ((
 CORBA::SystemException,
 CF::PropertySet::InvalidConfiguration,
 CF::PropertySet::PartialConfiguration
))
 {
 //Add your implementation here
 }
void SecurityX_i::query (
 CF::Properties & configProperties
)
 ACE_THROW_SPEC ((
 CORBA::SystemException,
 CF::UnknownProperties
))
 {
 //Add your implementation here
 }
CORBA::Object_ptr SecurityX_i::getPort (
 const char * name
)
 ACE_THROW_SPEC ((
 CORBA::SystemException,
 CF::PortSupplier::UnknownPort
))
 {
 //Add your implementation here
 cout<<" ---"<<endl;
 cout<<"Beginning getPort Operation"<<endl;
 cout<< "Requested port name was: " << name << endl;
 static CORBA::Object* nilPtr;
 nilPtr = CORBA::Object::_nil();
 return(nilPtr);
 }

To set up the server project:
1. Copy the SecurityServer.cpp file into the directory.

NESI Part 5: Net-Centric Developer's Guide

94

2. Right-click the Security Server project icon in the left-hand browser window and select
Add Files to Project. Select SecurityServer.cpp, SecurityX_i.cpp, and SecurityX_i.h.

Note that SecurityX_i.cpp and SecurityX_i.h are the files that were generated by the
IDL compiler and which you renamed earlier.

3. Right-click the SecurityX_i.cpp file and edit it to match the listing provided above.

Very important: Don’t forget the #include "SecurityX_i.h" at the top of the file.
(You manually renamed the .h file after the IDL compiler had generated the code.)

Also, make sure that you add in all of the operational code under the //Add your
implementation here comments.

4. Right-click the SecurityX_i.h file for editing. The skeleton code generated by the IDL
compiler does not know how you will implement the object. It is only aware of the
defined interfaces.

5. Add a member variable to the SecurityX class and change the definition in the
SecurityX_i.h file.

6. At the top of the file, add the securityRating variable as shown in the code snippet
below.
//Class SecurityX_i
class SecurityX_i : public virtual POA_SecurityX
{
 CORBA::Long securityRating;
public:
 //Constructor
 SecurityX_i (void);

 //Destructor
 virtual ~SecurityX_i (void);

7. Right-click the Security Server project icon in the browser window and select Build.

Test the SCA
There are two methods of testing the SCA object:

• Execute the *.exe files from the Debug directory

• Execute the files individually from the Visual C++ workspace

Since you need to debug objects in the future, this example demonstrates the latter.

1. Right-click the Security Server project in the left-hand browser window and select Set as
Active Project.

2. Open the Build menu and select Execute Security Server.exe. The Security Server
console window opens.

Communications and transport

95

3. Right-click the Security Client project in the browser window and select Set as Active

Project.

4. Open the Build menu and select Execute Security Client.exe. The Security Client
console window opens.

5. Enter a numeric value and the client exercises the Security object. The Security Client

and Security Server console windows should now appear as shown below.

The Security Client console looks like this after user entry:

NESI Part 5: Net-Centric Developer's Guide

96

The Security Server console window looks like this after user input to client:

6. Close both windows.

References
Object Computing, Inc., TAO Developer’s Guide, Version 1.1a, http://www.ociweb.com, 2000.

Web sites

Site Description

http://jtrs.army.mil/ Joint Tactical
Radio Systems,
Joint Program
Office (JTRS/
JPO)

http://jtrs.army.mil/sections/technicalinformation/fset_technical_sca.html SCA technical

Communications and transport

97

overview

http://sca.jtrslab.org/ SCA change
proposal portal:
SCA
forum/Change
proposal
(account
required)

http://www.sdrforum.org/ Software-defined
radio forum
(commercial
SDR)

http://www.omg.org/ Object
Management
Group

http://www.mprg.org/research/ossie/index.html OSSIE: Open-
source SCA Core
Framework

http://www.orcacf.com/ ORCACF: Open-
source (limited
distribution)
Core Framework

http://www.govcomm.harris.com/dmtk/index.html Commercial
SCA Core
Framework

http://www.crc.ca/en/html/rmsc/home/sdr/projects/scari SCA Reference
Implementation
Project (SDR-
sponsored
implementation
project)

Documents

Version 2.2

Docume
nt
(format)

Location

SCA v2.2
(zip)

http://jtrs.army.mil/documents/sca_documents/V2.2/SCA_v2_2.zip

NESI Part 5: Net-Centric Developer's Guide

98

SCA API
Suppleme
nt (zip)

http://jtrs.army.mil/documents/sca_documents/API_Supplement_files/API_v2.2.zip

SCA
Security
Suppleme
nt (zip)

http://jtrs.army.mil/documents/sca_documents/SECURITY_Supplement_files/SECU
RITY_V2.2.zip

Version 2.2.1

Document
(format)

Location

SCA v2.2
(zip)

http://jtrs.army.mil/documents/sca_documents/V2.2/SCA_v2_2.zip

SCA API
Supplement
(zip)

http://jtrs.army.mil/documents/sca_documents/API_Supplement_files/API_v2.2.zi
p

SCA
Security
Supplement
(zip)

http://jtrs.army.mil/documents/sca_documents/SECURITY_Supplement_files/SE
CURITY_V2.2.zip

SCA v2.2.1
(zip)

http://jtrs.army.mil/documents/sca_documents/V2.2.1/NoChangeBarPDF/SCA/S
CA_v2.2.1.zip

SCA API
Supplement
(zip)

http://jtrs.army.mil/documents/sca_documents/V2.2.1/NoChangeBarPDF/API/A
PI_v2.2.1.zip

SCA
Security
Supplement
(zip)

http://jtrs.army.mil/documents/sca_documents/V2.2.1/NoChangeBarPDF/Securit
y/Security_v2.2.1.zip

SCA v2.2.1
Requirement
s (PDF)

http://jtrs.army.mil/sections/technicalinformation/req_trace_matrix/2.2.1/SCA

SCA SEC
v2.2.1
Requirement
s (PDF)

http://jtrs.army.mil/sections/technicalinformation/req_trace_matrix/2.2.1/SCA
SEC 2.2.1 Requirements (JPO view).pdf

SCA API
2.2.1

http://jtrs.army.mil/sections/technicalinformation/req_trace_matrix/2.2.1/SCA

Communications and transport

99

Requirement
s (PDF)

 API 2.2.1 Requirements (JPO view).pdf

SCA
Requirement
Attribute
Descriptions
(PDF)

http://jtrs.army.mil/sections/technicalinformation/req_trace_matrix/SCA_Reqs_A
ttribute_Descriptions_v1-1_05jun03.pdf

Version 3.0

Document
(format)

Location

SCA v3.0 (zip) http://jtrs.army.mil/documents/sca_documents/V3.0/SCA-V3.0.zip

Specialized
Hardware
Supplements
(zip)

http://jtrs.army.mil/documents/sca_documents/V3.0/SCA-Special-HW-Sup.zip

SCA API
Supplement
(zip)

http://jtrs.army.mil/documents/sca_documents/V3.0/SCA-V3.0-APIs.zip

SCA Security
Supplement
(zip)

http://jtrs.army.mil/documents/sca_documents/V3.0/SCA-V3.0-Security-
Supplements.zip

SCA
Developer's
Guide (zip)

http://jtrs.army.mil/sections/technicalinformation/developersguide/pdfs/pdfs.zi
p

API
Standardizatio
n Process
(PDF)

http://jtrs.army.mil/documents/sca_documents/api_policy_files/API
Standardization Process.pdf

101

Reference implementations
This section discusses applications that incorporate all three tiers.

Future recommendations will include:

• COE guidelines: Application structures and development strategies to support
orthogonal NCES and COE development requirements.

• Palm OS 5 and above

• Wireless environments: Pocket OS/Windows CE, J2ME

Note that this may be moved to other sections of the NESI documentation, as appropriate.

NESI Part 5: Net-Centric Developer's Guide

102

GIS display environments
The DoD's net-centric warfare environment requires systems that can be quickly adapted to meet
changing requirements. This section explains how to apply the principles of net-centricity to the
development and maintenance of GIS systems. Developers must be able to quickly customize,
reconfigure, and modify GIS systems to support war-fighting demands. This requires the DoD to
use an open-architecture and open-standards approach, and take advantage of new technologies as
they arise.

This section contains the following topics:

• OGC WS architecture, Web Feature and Coverage Services, and OGC API: Describe an
open-source implementation of an open-architecture, open-standards approach for thick
and thin GIS client applications

• Examples of GIS open architecture: Demonstrates this vision using an open-source
implementation

• Provides recommendations on how to implement GIS applications with this new
architecture

• Migrating to GIS open architecture: Provides recommendations on how to migrate
legacy GIS applications to this new architecture

The examples in this section use open source products, since NESI is built around an open source
philosophy. However, these products are not necessarily the best for every circumstance. The
coding techniques and the guidance provided apply to any open-architecture, open-standards
approach.

Goals
• Support joint interoperability across GIS visualization components through a component-

based open standards approach

• Position applications to operate in conjunction with any GIS application with minimal
development effort

• Enable applications to take advantage of new technologies in a cost-effective manner.

• React to changing GIS visualization needs while minimizing the impact to programs and
budgets

• Facilitate the design, development, maintenance, evolution, and usage of GIS systems
that support the NCW environment

• Facilitate a cost-effective method to comply with DoD Net-Centric directives as
applications migrate into the net-centric environment in the Global Information Grid
(GIG)

NESI strategy
• Isolate change and its associated integration and switching costs via a loosely coupled

component-based and open-standards approach

Reference implementations

103

• Abstract the data access and rendering portions of GIS applications through an open-
standards interface layer

• Make applications agile, so they can use whatever GIS application supports their
operational requirements

• Decouple the visualization layer from the rest of the application (when appropriate) with
an open-standards GIS layer

• Within applications, decouple the task of rendering control from the task of producing the
content; allow each area to evolve independently (see GIS development communities)

• Use an open-standards, platform-independent data strategy

Migration strategies
To minimize the effort of developing an open standards-based architecture, there are two
migration strategies:

• Thin client development

• Thick client development

OGC WS architecture
This section demonstrates how a Service Oriented Architecture (SOA) works with a GIS
application using the OGC open-source framework called OGC (http://www.opengis.org/) Web
Services (WS) distributed architecture.

There are two complementary elements to this approach:

• OGC Web Services (OWS) architecture

• OGC API layer called GO-1/GEOBJECTS

The notional OWS architecture appears in the figure below.

NESI Part 5: Net-Centric Developer's Guide

104

These data sources are called Web Feature Services (WFS) and Web Coverage Services (WCS).

Components
This architecture is based on the OGC standards. These standards include five main components:

WFS Web Feature Server

WMS Web Map Server

WCS Web Coverage Server

GRS GIS Replication Server (WFS and WNS implementation)

GO-1 Geospatial Rendering APIs

Navy initiatives
There are two Navy initiatives towards this end:

• Joint Open Source WebCOP (JWC), based on the Navy Open Source WebCOP
(NOSWC)

• Commercial Joint Mapping Tool Kit (C/JMTK)

Web Feature and Coverage Services
This section discusses the Web Feature Service (WFS) and Web Coverage Service (WCS).

Reference implementations

105

WFS vs. WCS
To help developers choose between WFS and WCS, NESI identified three broad categories of
data based on complexity. To decide what service to program against, evaluate your data and
determine where it fits in this chart.

WFS candidates !  WCS candidates

EASY MEDIUM HARD

Point data Vector data Gridded data
(DTED data, Terrain data)

Icons Complex styles
(WX fronts, Mine field fills)

Imagery data

Tracks 2525 Symbology

Overlays Style Layer Descriptions (SLD)

2525 Symbology Highly linked data

Web Feature Service (WFS)
The WFS specification defines interfaces for describing data manipulation operations of
geographic features. Data manipulation operations include the ability to:

• Create a new feature instance

• Delete a feature instance

• Update a feature instance

• Get or Query features based on spatial and non-spatial constraints

A WFS describes discovery, query, or data transformation operations. The request is generated on
the client and is posted to a web feature server using HTTP. The web feature server then executes
the request. The WFS specification uses HTTP as the distributed computing platform, although
this is not a hard requirement.

There are two encodings defined for WFS operations:

• XML (amenable to HTTP POST/SOAP)

• Keyword-Value pairs (amenable to HTTP GET/REST)

Vendors
A current list of vendors that implement OWS services appears on the OGC web site:

http://www.opengis.org/resources/?page=products

WFS communication models
The WFS specification supports two communication models:

NESI Part 5: Net-Centric Developer's Guide

106

• Stateless Request Reply

• Pub/Sub

The WNS is one of the implementation specifications for the Pub/Sub model. Regardless of the
model, URL format is used and specified in the WFS specification.

At this time there are no open-standard implementations of WNSs. Vendors plan to release
implementations once the standard has been ratified.

WFS data
The Geography Markup Language (GML) passes data back and forth between a Web Feature
Server and a client. GML normally communicates geospatial data but also supports other types of
data.

GML
GML expresses feature data in and out of a feature server. The GML standard is at V2.0 and is
defined by the WFS 1.0 specification. This standard covers the following new topics:

• Coordinates

• Geometry (e.g., polygons)

V3.0 of the specification, which is currently being released, includes Topology, which enables the
expression of facts such as "Road A ends at Road B."

WFS public interfaces

Static interfaces
The static interface model for the OGC Web Service model appears in the figure below.

The Transaction and LockFeature operations are also optional.

When writing a WFS, you must implement the following operations:

• GetCapabilities

• DescribeFeatureType

• GetFeature

Dynamic interfaces
The dynamic request/reply interface model for the OGC Web Service model appears in the figure
below.

Reference implementations

107

Dynamic interface updates
The client gets updates by one of two mechanisms:

• Notification: Recommended but not mandatory. Depends on the availability of a WMS
implementation.

• Polling: Use this method if a WMS implementation is not available.
WFS dynamic interface web notification model

This model uses the OGC Web Notification Service to send update notifications to registered
clients. The Notification interface appears in the figure below.

WFS dynamic interface web notification polling model

The polling model interface appears in the figure below.

NESI Part 5: Net-Centric Developer's Guide

108

Web Coverage Service (WCS)
The WCS specification defines interfaces for describing coverage features that associate positons
within a bounded space. This service is specifically designed and optimized to handle gridded
data such as a raster image or a digital elevation matrix. The operations are similar to the Web
Feature Service, but handle a different type of data.

For more information, go to http://www.opengis.org/specs/?page=specs.

OGC API
Overview
GO-1 APIs (http://www.geobject.org) are the OGC soon-to-be-ratified (expected in Q1CY04)
open standards for an interoperable GIS rendering abstraction layer.

Geobject APIs are the precursor to GO-1 and are not an OGC standard. This initiative was
sponsored by DISA/DARPA JPO and SPAWAR.

Implementations
Currently there are only Java bindings available for Geobjects. The specifications are available at:
http://www.geobject.org/javaImpl.html.

Geobject V2.0, under development, covers two new packages for military specific concerns:
org.geobject.mil and org.geobject.mil.milstd2525b. V2.0 will be superceded by the ratified
standard and will become GO-1 V1.0. This should be released in Q1CY04.

Recommendation
Developers should use Geobject V1.3 for development until the GO-1 bindings have been ratified
and released.

Reference implementations

109

Geobject specification
The Geobject specification defines a level of abstraction between the application developers and
the implementers of the methods prescribed by the specification. This allows the developers to
build components or applications without regard to the underlying implementation.

The Geobject specification:

• Defines abstractions for the drawing canvas and input devices (e.g., mouse and keyboard)

• Supports any coordinate space, such as 2D and 3D Cartesian, polar, and geographical;
new coordinate spaces will be added to the specification as they are identified

• Has an extensible, modular design

Core specification
Currently the core Geobject specification is complete and available in the Unified Modelling
Language (UML), with a complete Java interface implementation, ready for integration into
geographic/geometric products. The core Geobject specification covers key 2D primitive
constructs, management of a drawing canvas and input devices, and some support for 3D
concepts.

Subspecifications
Optional subspecifications extend Geobject into areas that some vendor implementations may not
support. Open source processes for the following subspecifications are likely to be initiated in the
near future:

Subspecification Probable functionality

3D Geobjects Supports surfaces, solids, integration of standard 3D
models such as VRML, and other 3D concepts

Advanced 2D Geobjects Supports graphics like Java 2D's General Path, Splines,
and other 2D types defined by the Open GIS
Consortium (OGC)

Military Geobjects Supports at least US DoD graphics standards including
MIL-STD-2525x symbology, tactical graphics, and
other common military graphics such as unit or naval
formations

Immediate Mode Rendering Adds an optional method for rendering Geobjects using
lightweight, transient calls during the physical rendering
process; this helps render extensive amounts of graphical
information, but is not easily supported by some
implementations, such as distributed or client/server map
engines

Implementations
Implementations of language-specific bindings for the Geobject core and subspecifications are
being developed in other languages and for other platforms. Other than Java, current proposals

NESI Part 5: Net-Centric Developer's Guide

110

include C++ for Windows, COM (which may be the same implementation as C++ for Windows),
.NET, and Unix/X-Windows.

Geobject API
Geobject provides a set of common, lightweight abstractions for describing geometric and
geographic objects. The following sections provide a high-level overview of the API. For more
detailed information, consult http://www.geobject.org/umldoc/1.2/indexLeft.html.

Geobject package
The main Geobject package contains:

• Five categories of Geobject abstractions for describing geometric and geographic objects

• Five categories of renderable Geobject abstractions

Specializations of Geobject describe specific geometric/geographic objects such as GeoLabel and
GeoPolygon. There are additional abstractions and support classes for organizing, editing, and
rendering the objects.

Class hierarchy UML diagram

Reference implementations

111

Geometric/Geographic abstraction categories

AggregateGeobject Creates collections of Geobjects so that complex Geobjects can be
constructed. For example, an AggregateGeobject containing a
GeoIcon, a GeoLabel, and a GeoPolyline could represent a moving
object with an icon, a label, and a course/speed indicator.

EditableGeobject Defines a common abstraction for implementing editable
Geobjects, where users can manipulate visual representations of
the underlying Geobjects.

OrderedAggregate Extends the AggregateGeobject interface to enable users to specify
a stacking order or Z-order.

ProjectedGeobject Defines a common abstraction for implementations of projected
Geobjects. This means that the line between two vertices will be
segmented into multiple sublines and the endpoints of a
GeoPolyline line segment will get projected onto the drawing
surface as part of the rendering process before a straight line is
drawn between the two endpoints.

ProjectedPathGeobject Defines a common abstraction for objects with vertices. The pixels
between vertices can be calculated in several different ways.

Renderable Geobject abstraction categories
There are five main renderable Geobject categories:

• GeoIcon

• GeoLabel

• GeoPolygon

• GeoPolyline

• GeoScaledImage

The class hierarchy UML diagram for GeoIcon appears in the figure below:

NESI Part 5: Net-Centric Developer's Guide

112

Examples: GIS open architecture
This section contains examples that demonstrate how the OGC's open architecture works using:

• Navy Open Source WebCOP (NOSWC)

• Commercial Joint Mapping Tool Kit (C/JMTK), where the services are ESRI OGC-
compliant

• Command and Control Personal Computer (C2PC), which uses an OGC abstraction
layer

The examples build on each other to demonstrate interoperability across GIS applications that
use this OGC framework.

Navy Open Source WebCOP (NOSWC)
The Navy currently uses the Navy Open Source WebCOP (NOSWC) for command and control.
NOSWC is a web-based GIS framework that implements the Web Map Service (WMS)
specification defined by the Open GIS Consortium.

The WebCOP user interface is based in an Internet browser. Within this request/response
paradigm there is no elegant way for the browser to asynchronously respond to server updates.
Therefore, the browser has to poll for updates. There is an auto-refresh feature in WebCOP under
the Map Options tab above the left navigation tree.

For more detailed information on developing to this WebCOP, go to https://nesi.spawar.navy.mil/
and navigate to the WebCOP project to download a copy of their developer’s manual and the Java
API.

This example uses the OGC WFS implementation that comes with NOSWC. This demonstration
uses the OGC WFS with the NOSWC in both a J2EE environment using JBoss and a web server
environment using Tomcat.

This diagram illustrates the NOSWC architecture:

Reference implementations

113

Example: WFS to NOSWC in JBoss
Disclaimer: This example uses open-source products, since NESI itself is built on the open-
source philosophy. However, the products described are not necessarily the best choice for every
circumstance.

This example demonstrates the use of the OWS model in the Navy Open Source WebCOP
(NOSWC).

This example uses:

• JBoss v3.2.2.2

• MySQL v4.0.1.6

• WebCOP v3.8.0.2 or later

• Web Feature Server running on Windows 2000 and Windows XP

Before you begin, you must:

• Contact Polexis (info@polexis.com) to obtain a copy of the V3.8.0.2 or later WebCOP
release, and the the Composeable Feature Server release, which implements the OGC
Feature Server Specification

• Download JBoss and MySQL

NESI Part 5: Net-Centric Developer's Guide

114

Architecture

With the exception of the NOSWC, the components in this architecture use open source
components. This enables you to run the example without purchasing a product and licenses.
(This architecture currently operates in a Navy LOE.) The WebCOP runs in the same application
server as the WFS for ease of running the example.
Set up the JBoss example

Perform the procedures in this section to set up the example. You will be installing the non-COE
version of the NOSWC in JBoss.

To set up the environment:
1. Install JBoss.

2. Create a JBoss server instance called NESIServer.

3. Follow these steps to install NOSWC:

a. Create a target installation directory for NOSWC. This directory must not be in
the JBoss directory structure.

b. From the installation CD, copy the docs directory and the non-COE installation
files releaseroot.zip and webcop.war to the target installation directory.

c. Using WINZIP, extract the releaseroot.zip file in that directory.

d. Using WINZIP, expand the webcop.war file into a temporary directory.

e. Follow the installation instructions located in the docs directory for setting up the
root files and the data directory.

f. When you finish the installation, open web.xml and set the servlet.dir
parameter to the name of the WebCOP server instance directory in the JBoss
deploy directory.

g. Comment out the Security-constraint section, then save and close
web.xml.

h. Open baselayers.xml and comment out the TMS live layer that is identified with
the tag:
<!-- Layer queryable="0">
<Name>TMS Live</Name>

Reference implementations

115

i. Comment out the TDBM live layer that is identified with the tag:
<!-- Layer queryable="0">
 <Title>TDBM: Live</Title>
 <Abstract>Live TDBM Producers</Abstract>

4. Follow these steps to deploy NOSWC to JBoss:

a. Create a subdirectory under <WebCOP server instance dir>\deploy called
webcop.war.

b. Copy the expanded directory of the webcop.war file into the
\deploy\webcop.war subdirectory of the JBoss server instance folder, as
described in the JBoss install section.

c. Delete any files in \tmp\deploy.

d. Delete any files in \work\MainEngine\localhost.

5. Follow these steps to run NOSWC in JBoss:

a. Start the JBoss application server as described in the JBoss install section.

b. Start the web browser and enter the URL http://localhost:8080/webcop.
Note: The port number is the port number you used during the JBoss
configuration steps, as described in the JBoss install section.

c. Once the WebCOP is up, go to the left menu of the WebCOP and click on TDBM
Producers > TDBM replay, then check the Replay check box. The tracks should
appear.

d. Shut down the JBoss server.

To install the Web Feature Server:
1. Install the MySQL database.

2. Use either the MySQLGuiClient or the MySQL command interpreter to create a database
called wfs.

3. Create a new JBoss server instance, called WebFeatureServer, and configure the ports
as described in Installing JBoss.

4. Follow these steps to load the WFS components into this server instance:

a. Create two subdirectories under this server instance: file.war and WFL.war.

b. From the WFS distribution, copy file.war to the file.war subdirectory. Copy
WFL.war to the WFL.war subdirectory. Expand each war file.

c. Change to the WFL.war\WEB-INF subdirectory.

d. Modify the ABSOLUTE_FEATURES_DIRECTORY tag in web.xml to point to the
path of the WebCOP data directory.

e. Save the file.

f. Change to the file.war\WEB-INF subdirectory.

g. Modify the DATADIR tag in web.xml to point to the path of the WebCOP data
directory.

h. Modify the LOCALHOST tag in web.xml to your IP address.

NESI Part 5: Net-Centric Developer's Guide

116

i. Save the file.

5. Follow these steps to select the HPAC feature for this example:

a. Change to the WebCOP data root directory.

b. Change to the features subdirectory.

c. Keep the HPAC subdirectory and move the other subdirectories to a backup
directory .

6. Follow these steps to configure the WebCOP to accept WFS input:

a. Change to the JBoss WebCop deploy directory: <JBoss
install_dir>\server\NESIerver\deploy\webcop.war\WEB-INF.

b. Make a copy of the existing baselayers.xml file as a backup.

c. Add the following code to baselayers.xml:
<Layer queryable="0">
 <Name>Web Feature Server</Name>
 <Title>Web Feature Server</Title>
 <Abstract>Web Feature Server</Abstract>
 <SRS>
 EPSG:4326 AUTO:42400 AUTO:42402 AUTO:42403
 AUTO:42404 AUTO:42405 AUTO:42406 AUTO:42407 AUTO:42408
 </SRS>
 <LatLonBoundingBox
 minx="-180.0"
 miny="-90.0"
 maxx="180.0"
 maxy="90.0"/>
 <DataURL/>
 <Style>
 <Name>default</Name>
 <Title>Default</Title>
 </Style>
 <ScaleHint min="0.0" max="0.0"/>

 <Host>198.253.7.109</Host>
 <Port>8085</Port>
 <Path>/WFS/WFSServlet</Path>
 <ExposeFeaturesOfType>HPAC</ExposeFeaturesOfType>
 </WMSLayerLoader>
</Layer>

d. Modify the host IP and port number to match your JBoss environment:
<Host>198.253.7.109</Host>
<Port>8085</Port>
The port number should be the JBoss port number you used to configure this
instance of the JBoss server for the web feature server.

e. Save the file.

7. Make a copy of the existing web.xml file as a backup.

8. Add this code to web.xml:
<context-param>
 <param-name>LOCALHOST</param-name>

Reference implementations

117

 <param-value>198.253.7.109</param-value>
 <description>The IP address or FULL MACHINE NAME of the
machine this web app
is running on ('localhost' will NOT WORK!!)
 </description>
</context-param>

<context-param>
 <param-name>WFS_PATH</param-name>
 <param-value>http://198.253.7.109:8085/WFS/WFSServlet</param-
value>
<description>The path to the WFSServlet to post insert layer
requests
</description>
</context-param>

9. Modify the LOCALHOST param to point to your IP address:

<param-value>http://198.253.7.109:8085/WFS/WFSServlet</param-
value>

10. Modify the WFS_PATH to point to your IP address. The port number is the JBoss port
number for the web feature server instance.

11. Save the file.

The example is now configured and ready to run.
Run the JBoss example

1. Open a command window.

2. Enter this command to start the MySQL database:

C:> net start NESI_SQL

3. Enter this command to start the Web Feature Server instance:

<JBoss install_dir>\bin\run –c=WebFeatureServer

4. Wait for it to completely start up before proceeding.

5. To test basic WFS operation, point the browser to
http://localhost:8080/WFS/WFSServlet?REQUEST=GetCapabilities.
Note: The port number is the number you used to configure the JBoss server instance.

NESI Part 5: Net-Centric Developer's Guide

118

6. This example uses the GetCapabilities API call to determine available features. This
figure shows the output:

7. To test the example in the WFS, HPAC, point the browser to:

http://localhost:8080/WFS/WFSServlet?REQUEST=GetFeature&TYPENAME=
HPAC
Note: The port number is the number you used to configure the JBoss server instance.

Reference implementations

119

8. This figure shows the output:

9. Enter this command to start the WebCOP server instance:

<JBoss install_dir>\bin\run –c=NESIerver

10. Wait for it to completely start up before proceeding.

11. Open a web browser and access the WebCOP with this URL:
http://localhost:8080/webcop/.
Note: The port number is the number you used to configure the JBoss server instance.

This figure shows the output as it appears after you zoom in:

NESI Part 5: Net-Centric Developer's Guide

120

Example: WFS to NOSWC in Tomcat
Disclaimer: This example uses open-source products, since NESI itself is built on the open-
source philosophy. However, the products described are not necessarily the best choice for every
circumstance.

This example demonstrates the use of the open standards APIs and OWS model in the NOSWC.
It builds off the JBoss example and uses the same components, but the WebCOP runs in the
Tomcat web server (v4.1.18) rather than the JBoss server.
Architecture

Reference implementations

121

Set up the Tomcat WFS example

Perform the procedures in this section to set up the example.

To set up the Tomcat environment:
1. Go to http://jakarta.apache.org and download the Tomcat binaries.

2. Expand the downloaded zip file to a target installation directory.

3. Set the JAVA_HOME environment variable to point to your Java environment.

4. Open conf/server.xml and configure the Tomcat ports.

5. Open a command line and start Tomcat by executing the command:

<Tomcat install_dir>\bin\startup.bat

This figure illustrates a successful startup:

6. Open a web browser to test the Tomcat installation. Enter this URL:

http://localhost:8080/.

The Apache home page should appear as shown in the figure below:

NESI Part 5: Net-Centric Developer's Guide

122

7. Stop the Tomcat web server by entering Ctrl-C on the command line.

8. Follow these steps to install the Navy Open Source WebCOP into Tomcat. This enables
you to operate with the WFS from the JBoss example.

a. Change to the <JBoss>\server\NESIerver\deploy\webcop.war directory.

b. Create a WAR file that contains the WFS configuration from the JBoss example
with this command:

jar –cvf ..\webcop.mywar *

c. Copy webcop.mywar to <Tomcat install_dir>\webapps and rename it to
webcop.war.

9. There is an issue with XML parsers between Tomcat and WebCOP. To avoid this, you
need to replace some JAR files. Follow these steps:

a. Change to <Tomcat installation directory>\common\endorsed

b. Rename xercesImpl.jar and xmlParserAPIs.jar to backup file names.

c. Copy the xercesImpl.jar and xmlParserAPIs.jar files from the WebCOP
deploy directory to this directory as shown below:
Copy <Tomcat install_dir>\webapps\webcop\WEB-
INF\lib\xercesImpl.jar *
Copy <Tomcat install_dir>\webapps\webcop\WEB-
INF\lib\xmlParserAPIs.jar *

Run the Tomcat WFS example

1. Open a command window.

Reference implementations

123

2. Enter this command to start the MySQL database:

C:> net start NESI_SQL

3. Enter this command to start the Web Feature Server instance:

<JBoss install_dir>\bin\run –c=WebFeatureServer

4. Wait for it to completely start up before proceeding.

5. Enter this command to start the Tomcat web server:

<Tomcat install_dir>\bin\Catalina.bat run

6. Open a web browser and access the WebCOP with this URL:
http://localhost:8080/webcop.

This figure shows the output:

Commercial Joint Mapping Tool Kit (C/JMTK)
C/JMTK is a NIMA-funded, congressionally mandated initiative for GIS applications. The
initiative began in June 2002. It is a commercial replacement for the government-developed
JMTK and is based on the ESRI suite of products. It is expected to undergo DISA certification in
Q4 2003.

Its goals are:

NESI Part 5: Net-Centric Developer's Guide

124

• Be the standard geospatial tool for COE/GES

• Support the next generation of DoD C2 capabilities and systems

• Provide a standard architectural framework and common software components and
services to the entire GIS community

• Foster software reuse

• Reduce development and integration costs

Architecture

References
For sample code, developer’s guidance, and help desk support, visit the C/JMTK web site at
http://www.cjmtk.com/. The government point of contact is Sue Riley, who can be reached at
rileys@nima.mil.

C/JMTK licensing
There are currently four license options:

Toolkit Replaces the current JMTK. Licensed through NIMA, this option
provides unlimited license use and 10 years of life cycle support
(maintenance, training, technical support, and upgrades) to the COE/
GES community. This community is defined as the current and
future C2I programs, including DODIID and GCSS. This license is
not retroactive nor transferable to ESRI products.

Extended User
Community (EUC)

Provides commercial application licenses for software from
participating team members (ESRI, ERDAS, AGI) to those who
want to be compatible with COE. Licenses and maintenance costs
are the responsibility of the Extended User through a Basic
Purchase Agreement.

Foreign Military Sales (Covers the toolkit and applications. Funding and FMS approval

Reference implementations

125

FMS) authority are the responsibility of the sponsoring organization.

ESRI Products (as for
EUC)

Covers the license between the vendor and the user regardless of
whether the software is also in the toolkit. The cost is absorbed by
the user (BPA pricing for EUC).

C/JMTK vs. JMTK

 JMTK C/JMTK

2D Map Display ! !

3D Map Display !

Image Processing !

DBMS Integration partial !

Web-enabled !

Enterprise Solution !

Single Scalable Architecture !

C/JMTK architecture
The C/JMTK is an open, layered, services-oriented architecture.

It has three layers:

• Application(s)

• Service(s)

• Engine(s)

The architecture enables Net-Centric system development and software interoperability by
separating the capabilities from the applications. It promotes software unit reuse at two levels:

• Functional primitives (Engine)

• Mission services (Service)

NESI Part 5: Net-Centric Developer's Guide

126

Layering and associated services

C/JMTK features and capabilities
Image processing

Image processing uses ESRI’s raster engine from ERDAS. It supports:

• Import/export of multiple formats

• Pyramid layers

• Band/RGB management

• Histogram manipulation

• Contrast stretching

• Layer transparency

• Brightness

• Contrast

• Swipe tool

• Mosaicing
Sensor modeling

Sensor modeling uses ESRI’s AGI sensor model component. It supports:

Reference implementations

127

• Subsatellite point

• Satellite ground-track

• Satellite intervisibility

• Sensor footprints

• Sensor prediction

• Radar prediction
3D capabilities

C/JMTK offers the following 3D capabilities:

• Create three-dimensional visualizations

• Query three-dimensional data

• Generate fly-through simulations

• Build surface models

• Interactive perspective viewing

• Line-of-site analysis

• Viewshed analysis
Large data set solutions

Using ESRI’s ArcGlobe (under development) component to handle large data sets, C/JMTK
creates a “Whole Earth” solution. It supports an intelligent scale-dependent paging mechanism
that runs on Windows platforms.

C/JMTK toolkit components
Components

C/JMTK v1.0 is based on the ESRI ArcGIS v9.0 set. The main components of C/JMTK and their
associated implementations appear in this table and are described in more detail below:

C/JMTK
component

ESRI component Platform

Thick Client ArcObjects extended by ArcSDE,
Spatial Analyst, and 3D Analyst

Windows 2000: Native COM
implementation
Solaris: Uses Mainsoft
MainWin software to port
ArcObjects

Thin Client MapObjects Java Standard Edition (or
browsers such as IE/Netscape)

Windows 2000 and Solaris

Application
Server

ArcIMS Windows 2000 and Solaris

Data Server ArcSDE Windows 2000 and Solaris

NESI Part 5: Net-Centric Developer's Guide

128

Toolkit-Architecture mapping

This figure shows the mapping of the toolkit to the architecture:

Thick client components

The thick client uses the ESRI product ArcObjects. This is a fully compliant C/JMTK solution
and is an integral part of the ESRI desktop client. It is based on Microsoft’s Component Object
Model (COM).

JAVA bindings
C/JMTK uses Intrinsyc’s J-Integra to map to Java. It is a pure Java solution and supports both
custom interfaces as well as idispatch and connections points.
Thin client components

The thin client uses the ESRI product Map Objects Java Edition (MOJE) to create a client
customization framework. There are two toolkits:

• Display/query client toolkit

• ArcIMS client toolkit
Server components

There are four server components;

• ArcSDE service, the Spatial Database Engine

• ArcIMS service, the Internet Map Server

• ArcObjects, the component API

• Open API

Server architecture

Reference implementations

129

ArcSDE component
ArcSDE is the Geodatabase component. It centralizes the management of geographic
information.

Features include:

• Fast, multi-user access

• Optimization for network enterprise implementations

• Support for large, continuous databases

• Versioning

• TCP/IP, with no need for NFS mounts

• Interaction with a backend database such as SQLServer or ORACLE

• Multi-resolution pyramids that organize large imagery and NIMA image products

The Geodatabase data model:

• Uses features as objects

• Geometry

• Attributes

• Behavior (rules, methods, relationships)

• User-definable

ArcObjects component
ArcObjects provides data readers for data access using native formats such as VPF, RPF, NITF.
It is not optimized for network systems.

ArcIMS component
Features include:

• Internet mapping

• Distributed servers

• True services

NESI Part 5: Net-Centric Developer's Guide

130

• Developer options

• Client-side tools

• Scalable

• Industrial-strength

• Internet-tested

• Advanced GIS browsers

• Integrates data from multiple sources

Example: ESRI ArcIMS and web client in Tomcat
Disclaimer: This example uses open-source products, since NESI itself is built on the open-
source philosophy. However, the products described are not necessarily the best choice for every
circumstance.

This example demonstrates basic WFS capability with the ESRI WFS under ArcIMS on Tomcat.
It uses the same environment as the WebCOP example.
Set up the example

Make sure the Java Development Kit is installed on your computer.

To install and configure ArcIMS:
1. Go to http://www.esri.com/products.html and obtain ArcIMS for Windows. Start the

installation.

2. In the Select Features window, select Application Server Connectors > Java
Connector.

Reference implementations

131

3. Select Documentation > HTML Viewer.

4. Turn off the Metadata feature.

5. Select Samples > WMS viewer and Samples > Java and JSP Applications.

6. Select Tutorial Data and click Next. After the installation finishes, it enters a post-

installation phase.

7. Select the Custom option, then select ArcIMS Configuration and ArcIMS JRE
Configuration for Manager.

NESI Part 5: Net-Centric Developer's Guide

132

8. Set the output and working directories, then click Next.

9. Enter the directory where you want to store generated images and web pages. This is
typically the ArcIMS installation directory. Click Next.

10. Set the web server host name to the name of your machine, select the http option, then
click Next.

11. Set the ports and click Next.

Reference implementations

133

12. Set the user name and password for the administrator console. Click Next.

13. Set the JRE path, then select Use the system JRE for Author, Designer, and
Administrator. Click Next.

ArcIMS is now installed. Three services will be added to your machine and started automatically.
You may want to change these services to start up manually.

To install and configure the connectors:
1. Create a subdirectory under <Tomcat install_dir>\webapps called servlet.

2. Copy the file <ESRI>\ArcIMS\ArcIMS\Connectors\Servlet\
arcimsservletconnector.war to <Tomcat install_dir>\webapps\servlet.

3. Expand the WAR file in <Tomcat install_dir>\webapps\servlet. Open a command
window and enter:

C:> jar –xvf arcimsservletconnector.war

4. Change to the WEB-INF\classes subdirectory.

5. Modify Esrimap_prop and WMSEsrimap_prop as follows:

• Esrimap_prop: Set the appServerMachine property to the name of your
server from the ArcIMS installation or your IP address.

• WMSEsrimap_prop: Set the appServerMachine property to the name of your
server from the ArcIMS installation or your IP address.

6. Set the enable property to True.

The connectors are now ready to test.

To test the ESRI connectors with the ESRI Diagnostics tool:

NESI Part 5: Net-Centric Developer's Guide

134

1. Start Tomcat.

2. Open the Windows Start menu, then select Programs (in Windows XP, All Programs)
> ArcGIS > ArcIMS > Diagnostics.

3. In the ArcIMS Diagnostics window, set the Protocol to http. Enter the host name and

port.

4. Run both the number 1 and the number 2 test.

This figure shows the test output:

Reference implementations

135

To configure the administrator tool:
Install the ArcIMS Administrator.

1. Create a subdirectory under <Tomcat install_dir>\webapps called esriadmin.

2. Copy the file esriadmin.war from <ESRI install_dir>\ArcIMS\Administrator\ to
<Tomcat install_dir>\webapps\esriadmin.

3. Expand the WAR file in <Tomcat install_dir>\webapps\esriadmin.

4. Open a command window and enter:

C:> jar –xvf esriadmin.war

To create an ESRI output area:
1. Create a subdirectory under <Tomcat install_dir>\webapps called esrioutput.

2. Create a subdirectory under <Tomcat install_dir>\webapps\esrioutput called WEB-
INF.

3. Create a file called web.xml under <Tomcat install_dir>\webapps\esrioutput\WEB-
INF.

4. Add the following code to web.xml:

<?xml version="1.0" encoding="UTF-8"?>

Example: ESRI WFS in Tomcat
Disclaimer: This example uses open-source products, since NESI itself is built on the open-
source philosophy. However, the products described are not necessarily the best choice for every
circumstance.

This example builds on the ESRI ArcIMS and web client in Tomcat example. In this example both
the ESRI WFS and the ESRI client are hosted as Tomcat applications.

This example uses ESRI WFS v7.0.0.
Set up WFS in Tomcat

Follow the steps in this section to set up the example.

NESI Part 5: Net-Centric Developer's Guide

136

1. Obtain the ESRI WFS evaluation software from
http://www.esri.com/software/opengis/interopdownload.html.

2. Click the OGC WFS Connector for ArcIMS link and download the distribution. Save it
in a subdirectory under <ESRI install_dir>. This example uses the subdirectory
WFS_0_0_7.

3. Unzip the distribution.

4. Create a new subdirectory under <Tomcat install_dir>\webapps called esriwfs.

5. Create the subdirectories WEB-INF, lib, and classes under <Tomcat
install_dir>\webapps\esriwfs.

6. Populate these Tomcat subdirectories with the WFS distribution files as follows:
COPY C:\ESRI\ArcIMS\WFS_0_0_7\class* c:\<tomcat install
directory>\webapps esriwfs\WEB-INF\classes*
COPY C:\ESRI\ArcIMS\WFS_0_0_7\jars* c:\<tomcat install
directory>\webapps esriwfs\WEB-INF\lib*
COPY C:\ESRI\ArcIMS\WFS_0_0_7\config\web.xml
c:\\webapps\esriwfs\WEB-INF*
COPY C:\ESRI\ArcIMS\WFS_0_0_7\config\ ogc_wfs.properties,
WFS_response_capabilities_0014.xsl,
WFS_response_capabilities_100.xsl c:\\webapps\esriwfs*

7. Open web.xml in <Tomcat install_dir>\webapps\esriwfs\WEB-INF\.

8. Add the following code between the <web-app> and </web-app> tags and save the file:

<servlet>
 <servlet-name>WFSServlet</servlet-name>
 com.esri.ogc.wfs.WFSServlet
 <load-on-startup>1</load-on-startup>
</servlet>
<servlet-mapping>
 <servlet-name>WFSServlet</servlet-name>
 <url-pattern>/wfs</url-pattern>
</servlet-mapping>

9. Open ogc_wfs.properties.

10. Set the host parameter to your machine’s host name and set the servicename parameter
to SantaClara.

The Web Feature Server is now ready for testing.
Test WFS in Tomcat

1. Start Tomcat.

2. Start the santaclara service.

3. To test the basic functionality of the WFS, point your browser at the following URL:
http://localhost:8080/esriwfs/wfs?ServiceName=SantaClara&Request=

GetCapabilities. This tests the WFS GetCapabilites API call. You should get an
XML response as shown in the figure below:

Reference implementations

137

4. Test other WFS APIs by using the ESRI ThinClientTester.htm tool located in <Tomcat

install_dir>\webapps\esriwfs. Sample output appears in the figure below:

NESI Part 5: Net-Centric Developer's Guide

138

Run the ESRI WFS client to the ESRI the WFS in Tomcat

This example builds on the previous example for both the ESRI WFS. It uses:

• wfs_world sample data that comes with the ESRI WFS release

• ArcExplorer_4.0.1, Java edition

• the interoperability extension

To set up the ESRI WFS:
1. Configure the directory path of the <SHAPEWORKSPACE tag in the file <ESRI

install_dir>\ArcIMS\WFS_0_0_7\test_data\wfs_world.axl to point to the directory
where this file resides. For this example, it would be:
<SHAPEWORKSPACE name="shp_ws-0"
 directory="C:\ESRI\ArcIMS\WFS_0_0_7\test_data" />

2. Go to http://www.esri.com/software/opengis/interopdownload.html. Obtain the ESRI
WFS Client called arcExplorer and the interoperability extension that goes with it. Put
them in your ESRI install directory.

3. Install arcExplorer and the interoperability extension in the ESRI install directory.
Note: The ESRI WFS client is a standalone JAVA SWING thick client and the
interoperability extension is a plug-in to arcExplorer for communicating with a WFS.

4. Start Tomcat.

5. From the ESRI administrator tool, create a new service and point the Upload File
Path parameter to the directory containing the wfs_world.axl file.

Reference implementations

139

6. Open the Windows Start menu and select ArcGIS > ArcExplorer.

7. Open the Interoperability menu and select Connect to WFS.

NESI Part 5: Net-Centric Developer's Guide

140

8. Set the connection to the ESRI Web Feature Server by specifying the URL and Service
Name of the WFS.

9. Open the Interoperability menu and select Open GML Files to load in a background

map. You can find the cntry02.gml and cntry02.xsd files in the directory where you
installed the interoperability extension.

The output appears in the figure below:

Example: ESRI WFS to NOSWC WFS client
Disclaimer: This example uses open-source products, since NESI itself is built on the open-
source philosophy. However, the products described are not necessarily the best choice for every
circumstance.

This example builds on the previous examples of the ESRI WFS server and the NOSWC
configuration. You will configure the NOSWC to point to the ESRI WFS by modifying
baselayers.xml and web.xml, which pointed to the NOSWC WFS in Example: WFS to NOSWC
in JBOSS.

Reference implementations

141

Set up the example

1. Shut down the Tomcat web server.

2. Configure web.xml in <Tomcat install_dir>\webapps\WebCOP\WEB-INF to point to
the ESRI WFS as shown here:
<param-name>WFS_PATH</param-name>
<param-
value>http://198.253.7.109:7001/esriwfs/wfs?ServiceName=World
</param-value>

To connect to this WFS, you must specify the ServiceName=World parameter.

3. Configure the baselayers.xml file in <Tomcat install_dir>\webapps\WebCOP\WEB-
INF to point to the ESRI WFS as shown here:
<Port>7001</Port>
<Path>/esriwfs/wfs?ServiceName=World</Path>

4. Start Tomcat and point the browser to the NOSWC URL:
http://localhost:8080/WMS.
Note: The port number is the number you used when you installed NOSWC.

5. In the left menu, open the Web Features Server folder and select Cities. The cities appear
as dots on the NOSWC as shown in the figure below:

Command and Control Personal Computer (C2PC)
C2PC is a Windows-based thick client application for viewing and manipulating command-and-
control (C2) data. ATLAS is the GIS layer of the application. You can obtain ATLAS from the
C2PC program office, Ground C2 Program Manager for the Marine Corps at
MARCORSYSCOM. This section identifies infrastructure interfaces, APIs, and specifications for
applications sharing the enterprise network

NESI Part 5: Net-Centric Developer's Guide

142

Recommendation
To ensure decoupling from the visualization layer, do not develop to the ATLAS APIs. Develop
to either the OGC open-standards APIs (GO-1 and Geobjects) or to the JMTK COE APIs. C2PC
bindings allow developers to use either strategy.

Interface layers

Interface layer Description

C2PC ICSF Interface Layer
(CIIL)

This is a combined Navy and FIOP sponsored effort that is
under development. It provides a JMTK interface layer that
allows applications developed for the COE to run on C2PC.
Segments must be repackaged for the non-kernel C2PC
environment.

C2PC XIS Interface Layer (XIL) This is a combined Army and FIOP sponsored effort that is
under development. No sample code is available. It provides
an OGC -compliant interface layer that runs on both C2PC
and COE 4.x.
The GIS layer of the segments must be recoded to run on
C2PC, and segments must be repackaged for the non-kernel
C2PC environment.

Example: C2PC to NOSWC WFS
Disclaimer: This example uses open-source products, since NESI itself is built on the open-
source philosophy. However, the products described are not necessarily the best choice for every
circumstance.

This example shows how to use C2PC with the Web Feature Server architecture. The setup in
this section is specific to C2PC, but the JBoss and MySQL configurations apply. This example
requires an OGC bridge. Installing the XIS Integration Layer (XIL) creates the bridge to C2PC.
This example was done on an alpha release of XIL.

To set up the example:
1. Install C2PC.

2. Install XIL.

3. Create a directory under C:\Program Files\USMC\xil\ called xisc2pc.

4. Extract xisc2pc.jar into the xisc2pc directory.

5. Change to the xisc2pc\com\xis\wfsdsi\leifResources directory.

6. Edit wfs.xisref as shown below to set the port number to that of the WFS server:
doscript=\
.. wfs = new Packages.com.xis.wfsdsi.WFSDSI \
 ("localhost", 8080, "/WFS/WFSServlet");\
..if (view == null) {\
.. ..// view = new

Reference implementations

143

Packages.com.xis.map.map2d.view.Map2DView();\
.. ..view = new Packages.com.xis.table.TableView();\
.. ..viewHost.add(view);\
..}\
..view.addRawDataItem(wfs);

7. Repackage the xisc2pc.jar file.

8. Change to the C:\Program Files\USMC\xil\ directory.

9. Rename the old xisc2pc.jar to a backup file name.

10. Copy the modified xisc2pc\xisc2pc.jar up a level to C:\Program Files\USMC\xil\.

This configures the WFS connector for C2PC.

To run the example:
1. Enter this command to start the MySQL database:

C:> net start NESI_SQL

2. Start the JBoss application server as described in the JBoss install section.

3. Enter this command to start the Web Feature Server instance:

<JBoss install_dir>\bin\run –c=WebFeatureServer

4. Open the Windows Start menu and select Programs (in Windows XP, All Programs) >
C2PC > C2PC Client.

5. Open the Tools menu and select XIS Injector to start the XIL layer. This reconfigures the
menu items in C2PC, as shown below.

6. Open the Data Sources menu and select from the list of DSI menu items.

NESI Part 5: Net-Centric Developer's Guide

144

7. If the DSI menu items do not appear, select Options > Open Console. The Console
window displays any Java exceptions thrown by XIL. If there are no exceptions, double
check that all of the above instructions were followed.

C2PC connects to the WFS and displays the plume on the C2PC map:

Example: C2PC to C/JMTK WFS
Disclaimer: This example uses open-source products, since NESI itself is built on the open-
source philosophy. However, the products described are not necessarily the best choice for every
circumstance.

C2PC can connect to the ESRI Web Feature Server via the XIL layer just as it connected to the
NOSWC WFS. The WFS client connectors come with the XIL release. You can obtain the code
for this from the NOSWC site (for more information, send email to info@polexis.com).

To set up this example:

Reference implementations

145

• Configure C2PC to accept WFS input. The ESRI WFS configurations used in the C2PC
to NOSWC WFS example also apply to this example.

To run the example:
1. Start the Tomcat server.

2. Start the world service from the ESRI administrator console.

3. Open the Windows Start menu and select Programs (in Windows XP, All Programs) >
C2PC > C2PC Client to launch the C2PC client application.

4. Follow these steps to start up XIL from within C2PC:

a. Open the Tools menu and select XIS Injector. This reconfigures the menu items
in C2PC.

b. Open the Data Sources menu and select Web Feature Server.

c. Select Options > Open Console to display any errors during the connection to
the WFS.

5. The cities are rendered on the world map (similar to the ESRI ArcExplorer display) as
shown in the figure below:

Joint WebCOP (JWC)
The JWC is a new GCCS FoS initiative under development. Based on GCCS FoS ERA, it
combines separate GIS efforts into a joint services-based platform that is open and extensible.
The JWC combines the C/JMTK ArcIMS product suite, the NOSWC, and DISA’s WebCOP.

The JWC project is a multi-team, open-source effort between DISA, Army, Navy, and Air Force.
The first engineering drop was delivered in Q2CY04 and it is expected to be complete by
Q4CY05. JWC will be incorporated into the GCCS-J 4.2 baseline in Q1 Fy06.

NESI Part 5: Net-Centric Developer's Guide

146

Standards
The JWC adheres to the following standards:

Standard Web site

SOAP 1.1 http://www.w3.org/TR/SOAP

WSDL 1.1 http://www.w3.org/TR/2001/NOTE-wsdl-20010315

GML 3.0 http://www.opengis.org/techno/documents/02-023r4.pdf

J2EE 1.3.1 http://java.sun.com/j2ee/sdk_1.3

HTML 4.0 http://www.w3.org/TR/1998/REC-html40-19980424

CSS 2.0 http://www.w3.org/TR/REC-CSS2

JavaScript 1.5 http://www.ecma-international.org/publications/standards/ECMA-
262.htm

Architecture
The JWC is a modular, loosely coupled, web-enabled, distributed, N-tier, service-oriented
architecture written in Java, JavaScript, and HTML. It is platform-independent and designed to
work in a heterogeneous environment.

Tiers

The N-tiered architecture consists of:

• Web-service-based data tier

Reference implementations

147

• J2EE/CJMTK middle tier

• Thin-client-visualization tier
Services and components

The architecture comprises these major services and components:

• Feature store service

• Mapping service

• Application service

• Mediator service

• Security

• Client
Feature store service

The feature store service is a web service that provides high-speed, scalable access to common
data. Data communications occur via the WFS protocol, an open standard published by the OGC.
This provides a layer of abstraction between data services and the mapping application, offering
an easy migration path for existing data feeds. The WFS uses a relational database to cache data
locally as geospatial features.

The feature store is completely modular:

• Not tied to any other JWC service

• Based on the principle of loose coupling

• Independent of a given RDBMS implementation

The planned data services for Phase 1 are:

• COP Track Service

• TBMCS Air Battle Information Services

• I3 Data Services

 This figure illustrates the simplified collaboration model for the WFS in the JWC:

NESI Part 5: Net-Centric Developer's Guide

148

Mapping service

The mapping service is based on ESRI's ArcIMS. It supports all NGA mapping products and
commercial satellite formats. It is accessible via an open-standard map protocol. Any client can
retrieve multi-layered imagery from this service using a simple HTTP call. The mapping service
renders the full MIL-2525B symbology set, plus custom sets such as NTDS.

This figure illustrates the simplified collaboration model for the WMS in the JWC:

Application service

The JWC application service is built on a WebLogic 8.1 J2EE application server. It contains
business logic modules and user interface management modules, and can coexist with other J2EE
apps such as WEEMC.

The application service uses a standards-based API GO-1 , a map-independent API, to
communicate with the mapping service. This offers applications the ability to use a variety of
maps with the same code base, thus minimizing the porting costs between maps.
Mediator service

The mediator service promotes the loose coupling between the JWC services and the ArcSDE
database. It allows independent control and coordination of the interactions between the ArcSDE
database and the other JWC components and data sources. It simplifies the JWC component by
replacing the many-to-many interactions with one-to-many interactions. Mediating the ArcSDE
database operation involves:

• Querying a data service

• Transforming the XML

• Applying any business rules to the data

• Storing the data in the ArcSDE database
Security

The JWC security architecture is PKI-enabled and based on GSALT and LDAP. It collaborates
with the GCCS security mechanisms for security management. It supports:

Reference implementations

149

• PKI

• User- and role-based authentication

• The HTTP (HTTP/S) standard for all client connections

• Audit trails
Client

One of the JWC’s primary benefits is its convenient web-based interface. End users can connect
to the LAN from any computer or even a handheld device and gain instant access to the COP. It is
no longer necessary to install the COE on each machine, which reduces the cost of supporting
users.

The client is built with HTML and JavaScript only, and does not require any plugins. It will run
on Internet Explorer 5.5, Mozilla 1.3, and subsequent versions of either.

Since the client is web-based:

• It does not require a client-side installation

• All client profile information is managed on the server

• Any authorized user on the network can access the client

Infrastructure components
The JWC uses the following industry-standard, loosely coupled components:

• Data plugins

• Web mapping engine

• Symbology and overlay rendering

• Geospatial database

• Application server

• TMS web service wrappers

Recommendations

1. Developers developing to the JWC should develop to the OGC standards. Future
releases of this will include sample code for the JWC.

2. Functional service providers should follow these high-level recommendations in their
code:

• Expose interfaces via WSDL. JWC can support either REST or SOAP.

• Expose all data in XML.

• Publish a schema file for your data.

• Use DoD XML registry tags where appropriate.

• Use HTTPS to communicate with the JWC.

Best practices
To join the JWC open-source development community:

NESI Part 5: Net-Centric Developer's Guide

150

1. Go to the DISA open-source site at https://www.geden.org/.

2. Register for an account and log in.

3. Request access to the Joint WebCOP project.

4. Download the document for the development process overview and submission
guidelines from
https://jointwebcop.geden.org/servlets/ProjectDocumentList?expandFolder=687&folderI
D=687.

For more information, go to the Joint WebCOP project on the DISA open-souce site and click on
one of the project owners at https://jointwebcop.geden.org/.

References
1. To run the current build of the Joint WebCOP, go to

http://webcop.toc3d.com/jwebcop/index.jsp.

2. To get to the symbology, click one of the colored dots on the map and drill down.

3. Set the Overview Map so that you can see the details and overviews in the multiple
panes.

Implementing GIS open architecture
Currently, developers connect to NOSWC via DSIs, which connect data sources to the NOSWC
framework, or GO-1 APIs. Developers can use existing DSIs, use GO-1 APIs, or write custom
DSI components and integrate them into the framework. The framework graphically displays the
data on a map.

Reference implementations

151

Strategy
Develop and use an OGC-compliant abstraction layer that operates with existing GIS applications
like COE 4.x, C2PC, NOSWC, WebCOP, JWC and C/JMTK. The mission applications program
to this OGC-compliant abstraction layer for rendering. The abstraction layer manages all
rendering features.

The strategies outlined in this section offer the lowest cost strategies based on currently available
implementations and release schedules.

GIS development communities
To support an open-standards, component-based approach, NESI has created two development
communities for GIS applications:

• Rendering control community

• Data exposing community

Rendering control community
This community produces software that visually represents features on a GIS canvas.

Some examples of user communities in this area are 4.x Symplot Plugins, GCCS-M mission apps
that plot to charts, and Draw modules and plotters.

Data exposing community
This community produces software that supplies data to various communities, such as the
rendering control community. Developers in this community, such as COE 4.x data producers,
expose data for rendering.

There are two data exposing subcommunities, based on the type of data exposed to GIS
applications:

• Gridded data producers

• Point or feature data producers

GIS data categories
To help developers choose between WFS and WCS, NESI identified three broad categories of
data based on complexity.

Target architectures
Thin client architecture

Thick client architecture

Example: Using GO-1/Geobjects APIs in NOSWC
Disclaimer: This example uses open-source products, since NESI itself is built on the open-
source philosophy. However, the products described are not necessarily the best choice for every
circumstance.

The NOSWC uses connectors called Data Source Interfaces (DSIs). The DSIs use the Geobject
abstraction layer to render data into an image before passing the image to the browser. A DSI
consists of two Java classes: a DSI and a DSI translator.

NESI Part 5: Net-Centric Developer's Guide

152

Both GO-1 and Geobject make it easy to insert other rendering capabilities (ESRI’s ArcGIS) into
the NOSWC without impacting the DSI business logic. You also use this programming model to
program the WFS DSIs.

This example shows how a developer in the rendering community would code to a Geobjects API
using the NOSWC. The first section describes the overall process, and the following sections
explain how to code individual sections.

Process

To build a connection to the NOSWC:
1. Write the DSI (TestDsi.java).

2. Write the translator class (TestDsiTranslator.java).

3. Place the compiled classes into a JAR file.

4. Copy the jar file into the lib directory of the NOSWC installation.
For example, if you are using a Tomcat web server, the lib directory is located in <drive
letter>:\<Tomcat install_dir>\webapps\WebCOP\WEB-INF\lib.

5. Register this new DSI in the baselayers.xml file so the DSI appears in the left navigation
tree of the NOSWC GUI interface.
For example, if you are using a Tomcat web server, this file is located in <drive
letter>:\<Tomcat install_dir>\webapps\WebCOP\WEB-INF.

6. Restart the server.

7. Review your custom DSI as it appears in the NOSWC environment, where it can be
manipulated.

Write TestDsi.java
package dsi;

import java.awt.Color;

public class TestDsi
{
 private String type;
 private double latRadians;
 private double lonRadians;
 private String weatherData;
 private Color color;

public TestDsi(){}

 // type – name
 // lat, lon – latitude, longitude in degrees
public TestDsi(String type, double lat, double lon)
{
 this.type = type;
 setColor(new Color(0,255,255));
 latRadians = Math.toRadians(lat);
 lonRadians = Math.toRadians(lon);
}

Reference implementations

153

public void setType(String tp)
{
 type = tp;
}

public void setLat(double lat)
{
 latRadians = lat;
}

public void setLon(double lon)
{
 lonRadians = lon;
}

public void setWeatherData(String wx)
{
 weatherData = wx;
}

public void setColor(Color clr)
{
 color = clr;
}

public String getType()
{
 return type;
}

public double getLat()
{
 return latRadians;
}

 public double getLon()
{
 return lonRadians;
}

public String getWeather()
{
 // the developer might make a live call to a data source here like
 // a webservice or a database this method is one of several
 // that are called when a user right-clicks on
 // this dsi on the map and then selects the properties item
 // from the menu
 return weatherData;
}

public Color getColor()
{
 return color;
}

public String toString()
{

NESI Part 5: Net-Centric Developer's Guide

154

 return type;
}
}

Write TestDsiTranslator.java
package dsi;

import com.xis.leif.im.Domain;
import com.xis.leif.im.Translator;
import com.xis.leif.im.BaseDataItem;
import com.xis.leif.im.AttributeGetRequest;
import com.xis.leif.im.AttributeDescriptor;
import com.xis.leif.im.AttributeDescriptorFactory;
import com.xis.leif.im.FieldMetaData;
import com.xis.domains.leif.LeifDomain;
import com.xis.domains.map.MapDomain;
import com.xis.domains.geo.GeoDomain;
import com.xis.domains.display.DisplayDomain;
import com.xis.domains.temporal.TemporalDomain;
import com.xis.im.types.StringTypeMetaData;
import org.geobject.coord.LatLonAlt;
import org.geobject.GeobjectDefault;
import java.awt.Color;

public class TestDsiTranslator extends Translator
{
 private static final Domain[] baseDomains =
 new Domain[] {
 DisplayDomain.getDomain(), MapDomain.getDomain(),
 TemporalDomain.getDomain(), LeifDomain.getDomain(),
 GeoDomain.getDomain(),
};

private static FieldMetaData[] fieldMetaDataArray;
private static AttributeDescriptor[] localAttributeDescriptors;
private static AttributeDescriptor type;
private static AttributeDescriptor weather;

public TestDsiTranslator()
{
 if (localAttributeDescriptors == null)
 {
 AttributeDescriptorFactory factory =
 AttributeDescriptorFactory.getAttributeDescriptorFactory();

 type
 = factory.createAttributeDescriptor
 ("type",
 TestDsiTranslator.class,
 new StringTypeMetaData("Type")
);

 weather
 = factory.createAttributeDescriptor
 ("weather",
 TestDsiTranslator.class,

Reference implementations

155

 new StringTypeMetaData("Weather")
);

 localAttributeDescriptors = new AttributeDescriptor[] {type, weather};
}

if(fieldMetaDataArray == null)
 {
 FieldMetaData latLonAlt = new FieldMetaData(GeoDomain.latLonAlt);
 FieldMetaData typeMetaData = new FieldMetaData(type, "Type");
 FieldMetaData weatherMetaData = new FieldMetaData(weather,
"Weather");
 FieldMetaData penColor = new FieldMetaData(DisplayDomain.penColor);
 fieldMetaDataArray
 = new FieldMetaData[]
 { latLonAlt,
 typeMetaData,
 weatherMetaData ,
 penColor
 };
 }
}

public Domain[] getBaseDomains()
{
 return baseDomains;
}

public FieldMetaData[] getFieldMetaDataArray()
{
 return fieldMetaDataArray;
}

public AttributeDescriptor[] getAttributeDescriptors()
{
 return localAttributeDescriptors;
}

public LatLonAlt getLatLonAlt(AttributeGetRequest agr)
{
 LatLonAlt position
 = (LatLonAlt)GeobjectDefault.createCoordinate(LatLonAlt.class);
 double lat = ((TestDsi)agr.getRawDataItem()).getLat();
 double lon = ((TestDsi)agr.getRawDataItem()).getLon();
 position.setLatLon(lat,lon);
 return position;
}

public String getType(AttributeGetRequest agr)
{
 return ((TestDsi)agr.getRawDataItem()).getType();
}

public String getWeather(AttributeGetRequest agr)
{
 return ((TestDsi)agr.getRawDataItem()).getWeather();
}

NESI Part 5: Net-Centric Developer's Guide

156

public Color getPenColor(AttributeGetRequest agr)
{
 return ((TestDsi)agr.getRawDataItem()).getColor();
}
}

Register the DSI in baselayers.xml
<Layer queryable="0">
 <Title>NESI</Title>
 <Abstract>NESI</Abstract>
 <Layer queryable="0">
 <Name>testdsi</Name>
 <Title>Test Dsi</Title>
 <Abstract>Test Dsi</Abstract>
 <SRS>
 EPSG:4326 AUTO:42400 AUTO:42402 AUTO:42403
 AUTO:42404 AUTO:42405 AUTO:42406 AUTO:42407 AUTO:42408
 </SRS>
 <LatLonBoundingBox minx="-180.0" miny="-90.0" maxx="180.0"
maxy="90.0"/>
 <Style>
 <Name>default</Name>
 <Title>Default</Title>
 </Style>
 <ScaleHint min="0.0" max="0.0"/>
 <DataItemJavaScript>
 newPackages.dsi.TestDsi("TestDsi", 30.71, -117.12);
 </DataItemJavaScript>
 </Layer>
</Layer>

Review the test output
The WebCOP output below shows how the test DSI should appear. Notice the entry in the left
navigation tree and the dot on the map.

Reference implementations

157

Adding icons to the map
To place a custom icon (shown in this example as a red X) on the map, add the following code to
the sample files.

To place a custom icon:
1. Add the following line of code to baselayers.xml as the first line in the

<DataItemJavaScript> tag. The path to the icon must be a absolute path. Escape the
slashes.
java.lang.System.setProperty("testicon", “<path-to-your-
icon>//testicon.gif”);
This snippet of code loads the directory path and name of your icon into the system
properties, so the DSI can locate the icon during runtime.

2. Update TestDsi.java with this code:
// add these lines under existing imports
import javax.swing.ImageIcon;
import com.xis.icon.IconShape;
import com.xis.icon.SimpleIconShape;

// define new variable
private SimpleIconShape icon;

// place this line inside the constructor
icon = new SimpleIconShape(new
ImageIcon(System.getProperty("testicon")));

// add this new method
public IconShape getIconShape()
{

NESI Part 5: Net-Centric Developer's Guide

158

 return icon;
}

3. Update TestDsiTranslator.java with the new method and the accompanying import
statement shown below:
// add these to existing imports
import com.xis.icon.IconShape;

// add this new method
public IconShape getIconShape(AttributeGetRequest agr)
{
 return ((TestDsi)agr.getRawDataItem()).getIconShape();
}

The figure below shows the new icon on the map for the test DSI.

Adding collections of objects to the map
Members DSI

You can dynamically add multiple DSI objects to the map using the Members DSI. This feature
lets any DSI act as a container for other DSI objects. This technique is useful for animation and
rendering data types from a data stream. To get the new objects onto the map, add them as
members to an existing DSI. If a DSI contains members, the webCOP framework automatically
renders them.

You can use the Members feature in many situations. Two common scenarios are:

Reference implementations

159

• To hold new DSI objects that are created by a data stream

• To animate existing member DSI objects by changing the latitude and longitude attributes

To enable the Members feature:
1. Add this code to TestDsi.java:

// add these lines under existing imports
import com.xis.leif.im.BaseInfoModel;
import com.xis.leif.im.LeifDataItem;

// define new variable
private ArrayList members;

// place this line inside the constructor
members = new ArrayList();

// add this new method
public boolean canHaveMembers()
{
 return true;
}

// add this new method
public void addMember(Object o)
{
 members.add(o);
 BaseInfoModel bim = BaseInfoModel.getBaseInfoModel();
 LeifDataItem ldi = bim.getLeifDataItem(this, false);
 try
 {
 // for some reason WebCOP throws a null pointer here if the
checkbox
 // in the browser is not selected for this DSI
 ldi.fireMemberAdded(o, false);
 }
 catch (Exception ignore){}
}

// add this new method
public Object[] getMembers()
{
 return members.toArray();
}

2. Add this code to TestDsiTranslator.java:

// add this new method
public boolean canHaveMembers(AttributeGetRequest agr)
{
 return
((NESIChemBioDsi)agr.getRawDataItem()).canHaveMembers();
}

// add this new method
public Object[] getMembers(AttributeGetRequest agr)
{
 return ((NESIChemBioDsi)agr.getRawDataItem()).getMembers();

NESI Part 5: Net-Centric Developer's Guide

160

}

// add this new method
public int getInitialDrillDownLevel(AttributeGetRequest agr)
{
 return 1;
}

Activating the collection

To activate the collection, you must instantiate a triggering mechanism. In this example, a new
thread in testDSI.java listens for incoming data and adds a new DSI or modifies an existing one.
The example shows a portion of the run() method of the DSI that adds members to itself.
Latitude and Longitude are generated randomly.
try
{
 // read attributes from data source here…

 TestDsi dsi = new TestDsi(“<myID>”, 100d*Math.random(), -
100d*Math.random());

 dsi.setColor(new Color(255,255,0));
 addMember(dsi);
}
catch (Exception ex)
{
 System.out.println(ex.toString());
}

Adding overlays to the WebCOP
There are various ways to add overlays to the WebCOP. The following example uses HPAC
overlays to add plume models to the map. It creates a DSI that uses the Members feature. A
thread triggers the framework for updates. The following example shows part of the DSI’s run()
method.
try
{
 String txt = “this is my incoming data stream”;

 HpacOverlay hpac = HpacSetup.createOverlayFromStream(
 new ByteArrayInputStream(txt.getBytes()), "");

 HpacLayer[] layers = hpac.getLayers();

 double latRads = Math.toDegrees(
 layers[layers.length-
1].getGeoBounds().getTopLeftLatLonAlt().getLat());
 double lonRads = Math.toDegrees(
 layers[layers.length-
1].getGeoBounds().getBottomRightLatLonAlt().getLon());

 TestDsi dsi = new TestDsi("<myID>", latRads, lonRads);
 dsi.addMember(hpac);
 addMember(dsi);
}
catch (Exception ex)

Reference implementations

161

{
 System.out.println(ex.toString());
}

Dynamically updating DSI attributes

To dynamically change the attributes of a DSI:
1. When you create the Member DSI, store a data structure of IDs within it.

2. Include an ID with the incoming data. Then, any subsequent data can obtain a handle to
the appropriate DSI by using its ID.

3. When attributes change, signal the framework with the attribute-changed event.

Migrating to GIS open architecture
This section provides recommendations on migrating thin- and thick-client applications to an
open-standards approach.

Migrating Navy thin-client applications to OGC

Recommendations

1. All data sources or data producers posting data to a map display such as GCCS-M must
go through an OGC-compliant layer of open-standard interfaces for both thick and thin
client maps.

2. For applications that display data on either the WebCOP visualization layer or the
C/JMTK web visualization layer in a non-OGC -compliant architecture:

• Program to the GO-1 API specification or the WFS model, as appropriate
• Insulate applications from the mandated GIS conversions
• Make sure the converted code operates on existing WebCOPs (or next mandate)
• Restructure applications to a multi-tiered architecture
• Migrate applications to an OGC data producer model and decouple from the

chart
• Do not render directly into the legacy APIs; program to the OGC standards
• Change service providers to OGC-compliant Web Feature Servers or other

service types in the OGC Services interoperability stack, based on content type
• Simple data sources should be WFSs
• Complex data sources should be WCSs

NESI Part 5: Net-Centric Developer's Guide

162

Architecture

Migrating Navy thick-client applications to OGC
The Navy is moving towards an open-standards model for thick-client GIS applications. This will
be a layered architecture from OGC -based APIs to existing JMTK APIs. There are two
initiatives towards this end:

• OGC GO-1 API (recommended since it conforms to open standards)

• C/JMTK (not recommended; no current plans to make the implementation work on the
COE)

JMTK developers should use the interim initiatives CIIL and XIL to render on COE and C2PC
while the open-standards architectures are being completed.

Recommendations

1. All data sources or data producers posting data to a map display such as GCCS-M must
go through an OGC-compliant layer of open-standard interfaces for both thick and thin
client maps.

2. For applications that display data on either the COE 4.x JMTK API visualization layer,
the C2PC ATLAS API visualization layer, or the C/JMTK visualization layer:

• Eventually, program to the GO-1 API specification
• Insulate applications from the mandated GIS conversions
• Make sure the converted code operates on COE 4.x, C2PC or C/JMTK (or next

mandate)
• Plan an insulation strategy till GO-1 is available (the strategy involves either a

two-step or a three-step process, depending on whether there is an implemented
binding of the OGC-compliant layer for the target platform)

Reference implementations

163

• Restructure to a multi-tiered architecture, regardless of whether a binding of the
OGC-compliant layer is available for your target platform

• Migrate applications to 4.x data producer model and decouple from the chart,
regardless of the availability of a binding

• Decouple the rendering layer, using a design pattern like Facad or Bridge
• Do not render directly into the legacy APIs

3. JMV/Symplot API developers: Convert foreground objects to Geobject APIs.

4. JMV/JMTK API developers: Convert background objects to Geobject APIs.

5. TMS API developers: For track producers, use an insulation strategy such as the Façade
or Proxy pattern to decouple the TMS APIs from the rest of the application, positioning
the application for insertion of an open-standard API currently under development.

6. C2PC ATLAS developers: Use an insulation strategy such as the Façade or Proxy pattern
to decouple the ATLAS APIs from the rest of the application, positioning the application
for upcoming migration efforts.
In the long term, ATLAS is migrating to C/JMTK and will use the C/JMTK map. In the
short term there are two initiatives:

• CIIL, an interface layer added to ATLAS that allows developers to use
JMV/JMTK and SYMPLOT API calls to C2PC

• GO-1, an OGC abstraction layer added to ATLAS that allows developers to use
OGC GO-1/GEOBJECTS API calls

Architecture

NESI Part 5: Net-Centric Developer's Guide

164

Mobile devices
Overview
Mobile devices encompass portable technologies such as PDAs, wireless devices, cell phones,
tablets, Blackberries, and so on. Future devices are likely to become smaller, more powerful, and
more portable.

DoD mobile device guidelines do not allow wireless connections in classified spaces. Handheld
devices have the same operational restrictions as other equipment.

Best practices
To get the DoD mobile device guidelines:

1. Go to http://www.c3i.osd.mil/.

2. Search on wireless security policy.

3. On the search results page, select: Pentagon Area Common Information Technology
(IT) Wireless Security Policy.

There are two environments in the mobile device arena:

• PalmOS

• Wireless devices (such as cell phones)

DoD wireless strategies are undergoing development. Check back for additional information in
future releases.

Wireless cell phone environments
Target platforms
The wireless cell phone environment has three main target platforms:

Platform Description Download from

Openwave
(shown below)

Has a freeware
development
environment

http://www.openwave.com

Nokia Has a freeware
development
environment

http://www.forum.nokia.com

Motorola Has some
freeware
development
tools

http://kb.motorola.metrowerks.com/motorola/pcsHome.do

Reference implementations

165

Emulators are included in the development environments.

This figure shows an example of the Openwave IDE:

Testing

To test a wireless cell phone:
1. Test it in the IDE to verify correct operation.

2. Test it through a wireless gateway when it is ready to go for live testing.

PalmOS 4
Overview
There are three main development environments for developing palm applications with Palm OS
4 and below.

Environment Description Download from

PRC-TOOLS
GCC

PRC-TOOLS GCC
environment is a freeware
development environment

http://www.palmos.com/dev/tools/gcc/

NESI Part 5: Net-Centric Developer's Guide

166

for PalmOS 4 development.
It contains these
components:

• Cygwin
• PRC-Tools
• PilRC

Codewarrior
IDE

Codewarrior IDE is a
product of Metrowerks.
The Codewarrior IDE suite
contains two products, one
for Java and one for C/C++.
Use the Java version for
J2ME devices and the
C/C++ version for PalmOS.
The suite also contains a
GUI builder IDE called the
Constructor.

http://www.metrowerks.com/ or
http://www.palmos.com/developers

Falch.net IDE Falch.net IDE is a product
of Falch.net.

http://www.falch.net

Recommendations
1. Use the constructor tool to build Palm GUIs. Do not build your own.

2. Use the Palm emulator to test your Palm applications.

See Necessary components for instructions on how to obtain these components.

Necessary components

To set up the full development environment for PalmOS:
• Download the PalmOS SDK from http://www.palmos.com/dev/tools/sdk/index.html. This

contains resources for building Palm applications. The most important resources are:

o The full documentation suite

o Include files for the different development IDEs

o Libraries for linking the applications

o The constructor tool, which is an IDE-like tool for building the GUIs

• Obtain the Palm emulator called POSE, shown below, from
http://www.palmos.com/dev/tools/simulator/.

To emulate any specific device, you need the ROM image that is compatible with that
device. These are loaded into the emulator when you start POSE. You should use
gremlins in the emulator when testing Palm applications.

Reference implementations

167

• Download skins and ROMs for the emulator from
http://www.palmos.com/dev/tools/emulator/.

• Download the conduit development kit from http://www.palmos.com/dev/tools/cdk/win/.

• Download the Desktop SDK for developing Palm desktop plug-ins from
http://www.palmos.com/dev/tools/emulator/. Palm applications interface with the desktop
via the Palm Desktop Application. You can add application functionality to the desktop
through the Palm Desktop SDK, shown here:

NESI Part 5: Net-Centric Developer's Guide

168

References
The best way to get started is to get a book with examples that build out the basic skeleton, then
clone that example and use it to build your application. The Palm OS Programming Bible by
Lonnon R. Foster is a useful starting point.

For documentation, further examples, and SDKs, go to the open-source site,
http://www.palmos.com/developers.

169

Guidance

NESI Part 5: Net-Centric Developer's Guide

170

Guidance details
This section contains a complete set of the numbered guidance statements that are referenced
elsewhere in this guide.

Guidance

171

G1001
Statement Define public interfaces using a formal standard.

Rationale It’s important that a common language is used to define the interfaces so
producers and consumers can work independently and together.

There are many standards for defining interfaces (UML, WSDL, and
CORBA). The standard used must be documented and widely accepted by
the industry.

Derived From

Justifies

Referenced By Publish and insulate public interfaces

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Do UML documents exist that describe the shared
interfaces?

 Procedure Ask for the design documents to be provided during
the review process.

 Examples None

2. Test Are there WSDL files that document the interface to
web services?

 Procedure Look for the existence of .WSDL files.

 Examples None

3. Test Are there IDL files that document the interfaces to
CORBA services?

 Procedure Look for the existence of .idl files.

 Examples None

NESI Part 5: Net-Centric Developer's Guide

172

G1002
Statement Separate public interfaces from implementation.

Rationale This guidance encourages clean separation between interface and
implementation details for all types of application development. This
allows components and systems to be loosely coupled. The flexibility
allows groups of developers to work independently and in parallel to the
contract defined by the interface.

Another benefit of hiding implementation details is that it allows the
implementation to change without affecting users of the interface. This
means the interface can support dynamic and pluggable implementation.

Derived From

Justifies [G1217], [G1218], [G1219], [G1220], [G1221]

Referenced By Publish and insulate public interfaces

Acquisition
Phase

Development

Evaluation
Criteria

1. Test C++: Check to make sure interfaces are defined as
pure virtual functions.

 Procedure Make sure C++ classes are defined in header files.
Classes that represent external interfaces should
contain only pure virtual functions. Make sure the
class does not declare non-constant data members.
Also, make sure it does not define default
implementation. An interface should provide no
default behavior.

2. Test C: Check to make sure functions are declared in a
header file using prototypes.

 Procedure Make sure each library function has a prototype
declaration in the header file.

 Examples None

Guidance

173

G1003
Statement Separate the contents of application libraries that are to be shared from

libraries that are to be used internally.

Rationale The public libraries that are intended to be shared with outside consumers
need to remain fairly static in order to facilitate independent development
by the consumer and the producer of the libraries’ functionality. Changes
in libraries should be mutually agreed upon by both the producer and the
consumer.

All library content should not have external dependencies that are not
related to supporting the interface.

There must be clear separation between domain-specific and shared
libraries. Libraries that will be used in joint or multiple projects should not
have domain-specific code.

Derived From

Justifies

Referenced By Publish and insulate public interfaces

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Do the publicly shared libraries have any private or
undocumented functionality?

 Procedure Check each library against the publicly defined
header and make sure that all objects or methods are
public.

 Examples None

2. Test Does the library contain extraneous interfaces or
code that is not required?

 Procedure Use coverage tool/Junit to make sure there is no
extraneous code.

 Examples None

3. Test Do the publicly shared libraries have any private or
undocumented functionality?

 Procedure Check to make sure that one library use of another
library does not cross domain-specific boundaries.
For instance, a common library of XML utilities
should not have dependencies on another library that
supports a specific domain such as UHF satellites.
However, the reverse is okay.

 Examples None

NESI Part 5: Net-Centric Developer's Guide

174

G1004
Statement Public interfaces shall be backward-compatible, within the constraints of a

published deprecation policy.

Rationale The public interface is basically a contract between the producer of the
functionality defined in an interface and the consumer of the functionality.
These guidance statements are intended to ensure that this contract remains
intact and that the consumer of the functionality is not broken during the
update cycle of the interface.

Derived From

Justifies [G1018], [G1019], [G1020], [G1206], [G1207], [G1208]

Referenced By Publish and insulate public interfaces

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Does the public interface (interfaces that are used
externally, outside the project's domain) contain
versioning information?

 Procedure Check to make sure the interface/class has versioning
information.

 Examples None

2. Test Does the document structure contain a document that
indicates the shelf life of deprecated interfaces?

 Procedure Note: This is a mandatory document

Check for project documents that have information
on the life of deprecated interfaces.

 Examples None

Guidance

175

G1005
Statement Separate infrastructure capabilities from mission functions.

Rationale Applications should not try to reinvent the wheel by creating custom
enterprise services such as messaging, directory services, logging, etc.
Application development should use standardized APIs to access common
enterprise services. For instance, in Java, use JMS to access a messaging
system.

Derived From

Justifies

Referenced By Publish and insulate public interfaces

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Does the application re-create common and
available enterprise services?

 Procedure Check the application code for code that recreates
functionality of an enterprise service.

 Examples None

2. Test Does the application code access enterprise services
in a vendor-specific way?

 Procedure Check for code that accesses a vendor-specific API
instead of utilizing an industry-standard API.

 Examples None

NESI Part 5: Net-Centric Developer's Guide

176

G1007
Statement Applications shall use open, standardized, vendor-neutral APIs.

Rationale Using standardized, open APIs will enable the code to be more portable. It
will also prevent vendor lock-in. "Standardized" means industry consensus.
"Open" means available to everyone.

Derived From

Justifies [G1071]

Referenced By Publish and insulate public interfaces

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Does the application create customized/proprietary
solutions where standardized API exists?

 Procedure Check the application for code that has proprietary
solutions where standardized API exists. For
instance, does the application write its own
messaging system, bypassing utilizing the Java
Messaging System API.

 Examples None

2. Test Does the application utilize vendor-specific API?

 Procedure Check the application to make sure it is not using a
vendor-specific API. For instance, see if the
application accesses the database using a proprietary
interface from Oracle instead of the standard JDBC
calls.

 Examples None

Guidance

177

G1008
Statement Isolate platform-specific interfaces and vendor dependencies.

Rationale Insulating platform-specific code using standard abstractions or custom
classes will keep all non-portable code in one place and prevent
proliferation of non-portable code throughout the application.

Derived From

Justifies [G1073]

Referenced By Publish and insulate public interfaces, [G1118]

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Does the application contain any platform-specific
code that has not been abstracted?

 Procedure Check code that is non-portable. For instance, does
the code use back slashes (Windows) or forward
slashes (UNIX) in literal strings to create a path.
IE: String path = "\tmp";

 Examples None

2. Test Is platform-specific code isolated into a single class
or file?

 Procedure Search the files for platform-specific code.

 Examples None

NESI Part 5: Net-Centric Developer's Guide

178

G1010
Statement Use open-standards logging frameworks.

Rationale Standardizing on one logging API means the code will be more portable
between developers, and developers no longer need to learn multiple
logging frameworks.

Derived From

Justifies [G1209], [G1210]

Referenced By Publish and insulate public interfaces

Acquisition
Phase

Development

Evaluation
Criteria

See sublevel guidance.

Guidance

179

G1011
Statement All components must be independently deployable.

Rationale Independently deployable components do not have any dependencies on
other components. This is often unattainable because components are often
aggregations of lower-level components. Exceptions to this rule can occur
if the relationships between components:

• Are well-defined and well thought out

• Are carefully managed

• Are externally configurable

Derived From

Justifies

Referenced By Implement a component-based architecture

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Is the component dependent on other components?

 Procedure {Place the procedure to follow to evaluate the test
question here. The procedure can be multiple steps}

 Examples None

NESI Part 5: Net-Centric Developer's Guide

180

G1012
Statement Components should expose functionality through a set of services.

Rationale By exposing discrete units of functionality as services, business and data
integrity remain intact. A service receives a request, processes it, and
returns the result to the requester as a single operation.

Derived From

Justifies

Referenced By Implement a component-based architecture

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Are there WAR files that contain the component?

 Procedure Check for the occurrence of .war files.

 Examples None.

2. Test Are there WSDL files that define the services?

 Procedure Check for the occurrence of .wsdl files.

 Examples None.

Guidance

181

G1014
Statement Access the database only through open-standards interfaces to promote

database independence.

Rationale Standard API(s) such as JDBC or ODBC promote database independence.
However, even if you use a standard API, you can still write non-portable
code if you use non-ANSI-compliant SQL. Using non-ANSI-compliant
SQL causes vendor lock-in and makes interoperability difficult.

Derived From

Justifies [G1211], [G1212]

Referenced By

Acquisition
Phase

Development

Evaluation
Criteria

See sublevel guidance to evaluate this guidance.

NESI Part 5: Net-Centric Developer's Guide

182

G1018
Statement Add version numbers/ identifiers to all public interfaces that will be shared

between projects or groups.

Rationale Assigning versions is necessary when determining compatibility between
the interface and its consumer. Versioning public interfaces allows all
parties to track the evolution of the interface for backward compatibility.
This can help consumers plan for integration and migration.

Derived From [G1004]

Justifies

Referenced By

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Ensure that version information can be identified.
Does the code contain versioning information? It is
important to have the version information in the
shared public interface code because it identifies the
actual interface that consumers of the interface will
be coding to. Another benefit is that it allows tools to
automatically generate the documentation so it does
not need to be in two places.

 Procedure For Java, check for @version javadoc tag.

For other languages, and Java, check to see if the
code is annotated using XML tags or language-
specific tags that support versioning.

 Examples None

Guidance

183

G1019
Statement Deprecate old versions of publicly shared interfaces and do not remove

them until a specified time period has passed, as defined by the project
document for deprecating obsolete interfaces.

Rationale By deprecating instead of removing interfaces, development teams can
plan for software migration and continue to run the software with existing
deprecated interfaces.

Derived From [G1004]

Justifies

Referenced By

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Are old versions of public interfaces marked as
deprecated?

 Procedure Check the SCM logs of public interface files to
ensure that old interface functionality has not been
removed.

 Examples None

NESI Part 5: Net-Centric Developer's Guide

184

G1020
Statement A project must provide additional documents that describe plans and

procedures that can be used to evaluate the project’s compliance.

Rationale To ensure a NESI evaluation can be performed, these documents must be
provided.

Derived From [G1004]

Justifies [G1213], [G1214], [G1215], [G1216]

Referenced By

Acquisition
Phase

Development

Evaluation
Criteria

See sublevel guidance to evaluate this guidance

Guidance

185

G1021
Statement Create fully insulated classes.

Rationale Data members should not be public.

Do not expose implementation details of a class. For instance, information
such as the use of a link list or hashtable in a class should not be
exposed (i.e. made public).

Making implementation details public creates interdependencies between
the class and its users, subjecting the users to changes in implementation.
Therefore, access should only occur via public interface methods. This
makes the implementation more robust, because all data can be validated
when assigned new values or the changes can be logged.

Derived From

Justifies

Referenced By

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Do instance variables have public access or are they
more accessible than necessary?

 Procedure Check that the instance variable in classes does not
have public access unless it is static and final.

 Examples None

2. Test Does the class provide direct access to internal data
via pass by reference?

 Procedure Check to make sure that the methods that access the
internal state do not return a reference to the internal
data.

 Examples None

NESI Part 5: Net-Centric Developer's Guide

186

G1022
Statement Insulate public interfaces from compile-time dependencies.

Rationale There are three distinct advantages to separating interface from
implementation:

• Multiple interested parties (COIs) can develop the interface and
publish it to the user community ahead of any specific
implementation. This allows groups to work independently and in
parallel.

• It prevents multiple copies of the defining interface. Duplicating
the code for the interface in each implementation (library, jar, and
assembly) makes it difficult to maintain, especially as the interface
evolves.

• It insulates developers from the constant changes in
implementation.

Derived From

Justifies

Referenced By Publish and insulate public interfaces

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Is the packaging or deployment of the public
interface self-contained and isolated to only the
public interface(s)?

 Procedure Check to make sure that the jar, library, assembly,
and WSDL only contain the agreed-upon public
interface (interfaces being shared externally).

 Examples None

2. Test Does the container (jars, libraries, assemblies,
WSDL) contain files other than the interface?

 Procedure Check to make sure the library does not include or
rely upon any other files such as resource files,
properties files, configuration files, other libraries,
xml files, and so on that would force the repackaging
of the public interface.

 Examples None

3. Test Are there any outside influences that could affect the
packaging of the public interface?

 Procedure Check the public interface for dependence on
resource files, properties files, configuration files,
XML files, and other libraries or packages.

Guidance

187

 Examples None

NESI Part 5: Net-Centric Developer's Guide

188

G1027
Statement All source code developed with DoD funding must be internally

documented.

Rationale Well-documented source code is easier to maintain and enhance over time.
It is hard enough to get documentation about software and to keep it up to
date. If the documentation is not internal to the source code, the chances
that the software is current and up-to-date decreases. In recent years, the
trend has been to generate external documentation about the software by
processing the source code and comments (e.g., JavaDoc).

In addition to documenting the functionality of the source code, it is
important to capture the configuration control information (e.g., CVS).

Derived From

Justifies

Referenced By Standard interface documentation

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Do all the source code files have a header that
includes a statement protecting government rights to
the source code and the right to change the source
code?

 Procedure Scan each file and make sure the header includes a
statement that protects the government’s right to use,
modify, and share the information with other
government departments and agencies.

 Examples None

2. Test Do all the source code files have a header that
includes configuration information?

 Procedure Scan each file and make sure the header also includes
configuration management information such as
author, date created, and a history of modifications
and versions.

 Examples None

3. Test Do all the source code files have internal
documentation for attributes, methods that can be
processed by a computer?

 Procedure Scan the source files and make sure they are
internally documented with tags such as JavaDoc or
XML tags.

 Examples None

Guidance

189

G1030
Statement Use a standard GUI component library.

Rationale A predefined component library helps control cost and configuration.
Licensing issues can be resolved before development begins, and
component costs are minimized by avoiding library overlap.

Now that component architecture is standard, it is possible to put together
applications using a variety of components from multiple vendors. These
components are bundled in third-party toolkits that vastly extend the range
of options available in standard Windows or Java GUI toolkits. These
toolkits are in common use and possess a wide variety of pre-built
components. Almost all support common look-and-feel (e.g., Windows or
Java).

Derived From

Justifies

Referenced By Thick clients

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Does the user interface code use any other toolkits
besides a Standard GUI Toolkit?

 Procedure Check to make sure the thick-client code is
developed using the Swing/AWT library in Java, and
the standard, included Windows Toolkit In .NET.

 Examples None

NESI Part 5: Net-Centric Developer's Guide

190

G1031
Statement Architect applications to cleanly separate the presentation, business, and

data layers.

Rationale This guidance applies to all application types, from thick-client standalone
applications to distributed web applications. Clean separation between
presentation, business, and data layers will allow the application to be
easier to maintain and more reusable.

Derived From

Justifies

Referenced By

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Presentation layer:

• Check that the presentation layer does not
access the data layer directly.

• Check the presentation layer for the
presence of business logic.

Business layer:

• Check to make sure the business does not
contain any GUI code.

• Make sure access to the data layer is
insulated to data access interface.

Data layer:

• Check to make sure the data layer does not
contain GUI code.

• Check to make sure the data layer does not
contain business logic.

 Procedure Presentation layer:

• Check the presentation layer for JDBC,
SQL, or ODBC code.

• Make sure code such as specialized data
processing algorithms, or code that manages
workflow is not in the presentation tier.

Business layer:

• Check the business layer to make sure it does
not import GUI libraries or GUI components.

• Make sure database code such as SQL and
JDBC are isolated using Data Access
Pattern; data tier code should not proliferate

Guidance

191

throughout the middle tier.

• Make sure Value Object Pattern is used for
data transfer between the middle and data
layer.

Data layer:

• Make sure the data layer is not responsible
for generating GUI code.

• Make sure the data layer does not perform
any business logic. Look for use of stored
procedures.

 Examples None

NESI Part 5: Net-Centric Developer's Guide

192

G1032
Statement Validate all input fields.

Rationale Errors should be detected as close to point-of-data-entry as possible. This
greatly enhances the end-user experience and reduces frustration. This can
be done by reducing the number of freeform text fields and using selection
mechanisms such as radio buttons, option boxes, pull down lists, maps,
calendars, clocks, slider bars, and other numeric validation entries.

Derived From

Justifies

Referenced By Presentation Tier

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Do the GUI screens use non-freeform text entry
fields?

 Procedure Scan the GUI code looking for the use of non-
freeform text data entry mechanisms.

 Examples None.

Guidance

193

G1035
Statement Code must not deviate from W3C standards or use vendor-specific add-on

features.

Rationale Code cannot be browser-independent if vendor-specific add on features are
used. Vendor-specific add-on features reduce the portability and
interoperability of the code. Vendor-specific API(s) can cause vendor
lock-in and in many cases can also cause version lock-in. Following the
W3C standard avoids these problems.

Derived From

Justifies

Referenced By GUI design

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Does the code adhere strictly to the W3C standards?

 Procedure Check to make sure there is no vendor-specific code.

 Examples None

NESI Part 5: Net-Centric Developer's Guide

194

G1037
Statement File type must match file content.

Rationale Makes the code easier to read, maintain, and port to other environments if
information in a file is consistent with its file type and separated according
to functionality.

JavaScript files (.js) and cascading style sheets (.css) can be cached by
browsers for better performance.

This guidance also prevents mixing contents, such as including JavaScript
in an html file.

Derived From

Justifies [G1053]

Referenced By GUI design

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Is there any other information stored in an .html
file other than HTML?

 Procedure Check the contents of the .html file for the inclusion
of JavaScript or style sheet information.

 Examples None

2. Test Is there any other information stored in a .js file
other than JavaScript?

 Procedure Check the contents of the .html file for the inclusion
of HTML or style sheet information.

 Examples None

3. Test Is there any other information stored in a .css file
other than style sheet information?

 Procedure Check the contents of the .html file for the inclusion
of HTML or JavaScript.

 Examples None

Guidance

195

G1043
Statement Decouple the graphical style from the content format.

Rationale Makes it easy to change the style for the entire site.

Derived From

Justifies [G1044]

Referenced By GUI design

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Do all web document HTML, JSP, ASP, and CSS
follow the Disability Act guidelines?

 Procedure Check to make sure all web documents follow the
guidelines.

 Examples None

NESI Part 5: Net-Centric Developer's Guide

196

G1044
Statement Web documents shall comply with Disability Act guidelines.

Rationale These guidelines benefit all communities of interest.

For more information, see http://www.section508.gov

or

http://www.w3.org/TR/WAI-WEBCONTENT/

Derived From [G1043]

Justifies

Referenced By GUI design

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Do all web document HTML, JSP, ASP, and CSS
follow the Disability Act guidelines?

 Procedure Check to make sure all web documents follow the
guidelines.

Use available validation tools to validate Section 508
accessibility and WAI accessibility. Go to
http://www.contentquality.com/Default.asp to validate
the page.

 Examples None

Guidance

197

G1045
Statement Define XML format information separately in XSL.

Rationale XML documents should be free of any presentation information and
should only contain data. Separating presentation data from content allows
multiple presentations for the same content data.

Derived From

Justifies

Referenced By XML rendering

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Check for presentation information in XML
documents?

 Procedure Does the XML document contain only data?

If the XML document is not an XSLT document,
does it contain presentation information?

 Examples None

NESI Part 5: Net-Centric Developer's Guide

198

G1049
Statement Do not use ActiveX controls.

Rationale Browser incompatibility poses serious security risk, because it does not run
inside a sandbox. ActiveX controls are like applets, except they are not
restricted by a sandbox and can access client machine resources such as the
hard disk directly. This makes them very dangerous.

Derived From

Justifies

Referenced By Active Server Pages (ASP)

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Does the ASP use any ActiveX controls?

 Procedure Check for Active X controls inside web pages.

 Examples None

Guidance

199

G1050
Statement In ASP, isolate the presentation tier from the middle tier using COM

objects.

Rationale This is the best way to isolate the presentation tier from the middle tier in
ASP.

Derived From [G1058]

Justifies

Referenced By Active Server Pages (ASP)

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Is all the middle tier code isolated from the
presentation tier in ASP via COM?

 Procedure Verify that ASP files do not contain middle-tier code.
Instead, this code should be in COM objects
referenced from the ASP.

 Examples None

NESI Part 5: Net-Centric Developer's Guide

200

G1052
Statement Use the code-behind feature in ASP.NET to separate presentation code from

the business logic.

Rationale Separating presentation code from business logic allows the developers
and content designers to work independently. It also makes the code more
maintainable because changes in the design elements or business elements
do not affect each other.

Derived From

Justifies

Referenced By Active Server Pages for .NET (ASP.NET)

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Is there code in ASP pages?

 Procedure Check to make sure that ASP files have the code-
behind attribute in the first line instead of embedded
C# code in the ASP.

 Examples None

Guidance

201

G1053
Statement Do not embed HTML code in any code-behind code used by aspx

pages.

Rationale Intermixing VB or C# or C++ with presentation code (HTML) makes the
code unnecessarily difficult to maintain by both the developer and
designer. This is similar in concept to Java’s not embedding HTML code
in servlets.

Derived From [G1037], [G1058]

Justifies

Referenced By Active Server Pages for .NET (ASP.NET)

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Check for HTML code in code-behind code.

 Procedure Check the code-behind file (.aspx.vb for example)
for any HTML tags.

 Examples None

NESI Part 5: Net-Centric Developer's Guide

202

G1055
Statement Use a fully qualified, registered namespace with identity information for all

custom controls.

Rationale .NET allows users to create a custom control from a web page. This allows
the custom web page to be reusable just like a GUI control. This feature is
great; however, users must fully qualify their controls to prevent
namespace collisions.

Derived From

Justifies

Referenced By Active Server Pages for .NET (ASP.NET)

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Does the ASP register its identity?

 Procedure Check the .aspx file and make sure there is a
statement to register the custom control. Look for
something similar to

 Examples None

Guidance

203

G1056
Statement Specify a versioning policy for .NET assemblies.

Rationale Versioning assemblies and configuring dependent assemblies allow the
Common Language Runtime (CLR) to load the proper assemblies at
runtime for your application. This insulates the application from system
configuration changes.

Derived From

Justifies

Referenced By Active Server Pages for .NET (ASP.NET)

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Does the application assembly have versioning
information?

 Procedure Check the application assembly manifest for
versioning information.

Use the .NET configuration tool to check for
versioning policy and versioning information.

 Examples None

NESI Part 5: Net-Centric Developer's Guide

204

G1058
Statement Use the Model, View, Controller (MVC) pattern to decouple presentation

code from other tiers.

Rationale Separating data-layer code from presentation-layer code provides the
ability to base multiple views on the same model. This is especially
important in the enterprise model because often, the user interface varies
with the device (browser, mobile phone, thick client, etc.).

Isolating different layers allows changes to occur in each layer without
impacting other layers. For instance, if the data layer (model) decides to
switch databases, the changes are isolated to the data layer and do not
affect the view layer or controller layer.

Lastly, because MVC architecture enforces separation between
presentation, processing, and data layer, this allows functionality to be
loosely coupled and therefore more suited for reuse.

Derived From

Justifies [G1050], [G1053]

Referenced By

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Does the application use a Model 2 (MVC) pattern?

 Procedure Check to see if all requests are being mapped to a
single controller servlet.

Check that all page rendering are being done by a
JSP and not a servlet.

2. Test Does the application enforce clear separation
between data layer (model), presentation layer
(view), and middle/business layer (controller)?

 Procedure Check to make sure the application presentation is
not accessing the database directly.

Check to make sure the application data layer
(model) is not implementing business logic (store
procedures).

Check to make sure the middle/business layer
(controller) does not contain presentation code. For
example, make sure servlets do not generate HTML.

Make sure access to the database is isolated to Data
Access Object instead of proliferated throughout the
middle layer.

 Examples None

Guidance

205

G1060
Statement Encapsulate Java code that is used in JSP(s) in tag libraries.

Rationale Separating code from presentation allows developers and designers to
work independently. It makes the code reusable and more maintainable
because it is defined in a tag library.

Derived From

Justifies

Referenced By Java Server Pages (JSP)

Evaluation
Criteria

1. Test Do the JSP pages use tag libraries?

 Procedure Look through the JSP pages for embedded Java
source code.

 Examples None

NESI Part 5: Net-Centric Developer's Guide

206

G1071
Statement Connections to the enterprise (e.g., LDAP, JNDI, JMS, databases) should

use vendor-neutral interfaces.

Rationale Increases portability and maintainability. Many of the newer connection
mechanisms are vendor-neutral. Use these instead of isolation design
patterns or vendor-specific connection mechanisms.

Derived From [G1007]

Justifies

Referenced By [G1239], Java Naming & Directory Interface (JNDI)

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Is the connection mechanism vendor-neutral?

 Procedure Examine the source code for vendor-specific imports
or includes. Make sure only standard APIs are used.

 Examples None

Guidance

207

G1073
Statement Isolate vendor extensions to enterprise-services standard interfaces.

Rationale Vendor extensions are convenient, but help create "vendor lock" and
reduce vendor neutrality and migration. It is best to avoid these extensions
altogether. If that is not possible, then isolate them in an adapter or a
wrapper-like construct.

Derived From [G1008]

Justifies

Referenced By

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Are vendor extensions to enterprise services used?

 Procedure Make sure that no vendor-specific code is included
or imported except as part of an adapter or wrapper.

 Examples None

NESI Part 5: Net-Centric Developer's Guide

208

G1078
Statement Document the use of vendor-specific J2EE deployment descriptors.

Rationale Deployment descriptors that are not defined by the J2EE specification are
not portable between application servers. For example, BEA WebLogic
has a vendor-specific deployment descriptor called weblogic-ejb-jar.xml
and JBoss has a vendor specific deployment descriptor called jboss-
jar.xml.

Derived From

Justifies

Referenced By J2EE environment

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Are all the XML files that are not part of the J2EE
specification identified in a delivered document?

 Procedure Search all XML documents in the META-INF and
WEB-INF directories and identify any XML files that
are not defined by J2EE. These files should be found
in a README or other delivered file that describes
their purpose.

a. Web application
 WEB-INF/web.xml

b. EJB JAR
 META-INF/ejb-jar.xml

c. J2EE Connector
 META-INF/ra.xml

d. Client application
 META-INF/application-client.xml

e. Enterprise application
 META-INF/application.xml

 Examples None

Guidance

209

G1079
Statement J2EE applications should isolate tailorable data values into the deployment

descriptor.

Rationale Do not hard-code tailorable data into source files. The standard location
for tailorable data for J2EE applications is in deployment descriptors.
Developers should not reinvent the wheel of creating a non-standard
mechanism for retrieving configurable data. Tailorable data is made
accessible through application contexts that are provided by the
application container (J2EE application server).

Derived From

Justifies [G1200], [G1201]

Referenced By J2EE environment, Java Naming & Directory Interface (JNDI)

Acquisition
Phase

Development

Evaluation
Criteria

See the evaluation criteria for the guidance statements that this guidance
statement justifies.

NESI Part 5: Net-Centric Developer's Guide

210

G1080
Statement Web service environments should adhere to the WS-I standards for Basic

Profile.

Rationale Most of the COTS web service products have already met this
requirement. This is intended to cause a rejection of the non-standard web
server.

The WS-I standards for Basic Profile can be found at WSI Org Basic
Profile and at the Microsoft site, Microsoft Basic Profile.

Derived From

Justifies

Referenced By WS-I compliance guidance

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Is the web service product WS-I compliant?

 Procedure Identify the web-service product being used, and
verify through a literature search that it is WS-I
compliant.

 Examples None

Guidance

211

G1082
Statement Use the document literal style for all data transferred using SOAP where the

document is a W3 Organization’s Document Object Model (DOM).

Rationale The document literal style requires that the input and output parameters to
a web service be defined as W3 Organization Documents that follow the
Document Object Model (DOM). The DOM acts as a contract between the
producer and the consumer of the web service that is formal, well-defined,
and rigorous. By validating the DOM against an XML Schema Definition
(XSD), any discrepancies in the interface can be resolved.

Derived From

Justifies

Referenced By WS-I compliance guidance

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Does the WSDL define input, output, or returned
parameters as W3 Organization Documents that
follow the Document Object Model (DOM)?

 Procedure Review all WSDL files used to describe a web
service, and make sure they only pass documents.
Document types should be xsd:anyType.

 Examples None

NESI Part 5: Net-Centric Developer's Guide

212

G1083
Statement Do not pass DOM documents as strings.

Rationale Because of the relative simplicity of converting an XML document to a
string, it is easy to pass an entire document as a string rather than as an
XML document. This can cause problems if the document contains tags
that are similar to the tags used in the SOAP. Passing it as an XML
document ensures that the document is treated as a single entity.

Derived From

Justifies

Referenced By WS-I compliance guidance

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Does the WSDL define input, output, or returned
parameters as strings?

 Procedure Review all the WSDL files used to describe a web
service and make sure that they only pass documents,
not strings. Document types should be
xsd:anyType.

 Examples None

Guidance

213

G1084
Statement Documents transferred using SOAP should be validated by an XSD defined

by the Community of Interest (COI).

Rationale Numerous COIs are defining data that is specific to their needs. Many are
capturing the data in schemas that can be used in a DOM.

For example, the Joint Air and Missile Defense (JAMD) COI is working in
accordance with the DoD Network Centric Data Strategy.

The interfaces should leverage interface documents based on these efforts
rather than defining their own.

Derived From

Justifies

Referenced By WSDL guidance

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Does the WSDL reference external XSDs defined by
independent COIs?

 Procedure Review all the WSDL files and determine if the
parameters use or reference external XSDs.

 Examples None

NESI Part 5: Net-Centric Developer's Guide

214

G1085
Statement Use DoD-registered namespaces to avoid name collisions and conflicts.

Rationale Many organizations and groups provide services at the same time. Often,
two groups provide a service using the same name; for example, weather.
There are formal groups and organizations that can prevent these name
collisions.

For interim namespace management, use the COE prefix and segment
name for all components, even if your application is not a COE segment.
See namespace management procedures for the NESI Service Name
procedure.

Derived From

Justifies

Referenced By WSDL guidance

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Is the COE prefix and segment name used for all
components?

 Procedure Parse the XML and look for the appropriate COE
prefix and namespace.

 Examples None

Guidance

215

G1086
Statement All published WSDL files should use a method of defining the Document

Literal style for parameters that is interoperable across web-service vendors.

Rationale There are subtle differences between the ways web-service vendors handle the
document literal style. The method in which they define the Document Literal
style within the WSDL can introduce incompatibilities that cause problems
during ports between vendors.

Derived
From

Justifies

Referenced
By

WSDL guidance

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Are all the types used to pass documents into and out of the web
service xsd:anyType?

 Procedure Examine the WSDL file input parameters and return the
parameters’ element type to make sure they are defined as
xsd:anyType.

 Examples The Axis WSDL code snippet below is an example of how to
resolve interoperability issues. It modifies the WSDL file
schema definition section and changes the argument element
type to xsd:anyType.
<!— WSDL snippet from Axis for Document Literal
Style. ◊
<wsdl:types>
 <schema
<!— . . . Some code removed for brevity ◊
 <element
 name="in0"
 type=" apachesoap:Document"/>
 <element
 name="getCelestialInfoReturn"
 type=" apachesoap:Document"/>
 </schema>
 </wsdl:types>
<!— WSDL snippet from Axis for Document Literal
Style. ◊
<wsdl:types>
 <schema
<!— . . . some code removed for brevity ◊
 <element
 name="in0"
 type="xsd:anyType"/>
 <element

NESI Part 5: Net-Centric Developer's Guide

216

 name="getCelestialInfoReturn"
 type=" xsd:anyType"/>
 </schema>

2. Test Are XML documents passed as strings?

 Procedure Examine the code or the SOAP message to ensure the the
document is not passed as a string.

 Examples Passing the result of a report as a string (INCORRECT):
 <soapenv:Body>
 <getCelestialInfoReturn
 xmlns="urn:CelestialInfoDocDoc"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xsi:type="xsd:String">
 <CelestialInfoRpt xmlns="">
 <description>
 DOC-DOC: Results returned from :
 Softology01 (192.168.2.4)
 </description>
 <moonrise>2004-07-12 1:59 AM
PDT</moonrise>
 <moonset>2004-07-12 4:22 PM
PDT</moonset>
 <sunrise>2004-07-12 5:50 AM
PDT</sunrise>
 <sunset>2004-07-12 7:58 PM
PDT</sunset>
 </CelestialInfoRpt>
 </getCelestialInfoReturn>
 </soapenv:Body>
Passing the result of a report as XML (CORRECT):
 <soapenv:Body>
 <getCelestialInfoReturn
 xmlns="urn:CelestialInfoDocDoc"
 xmlns:ns1="http://xml.apache.org/xml-soap"
 xsi:type="ns1:Document">
 <CelestialInfoRpt xmlns="">
 <description>
 DOC-DOC: Results returned from :
 Softology01 (192.168.2.4)
 </description>
 <moonrise>2004-07-12 1:59 AM PDT</moonrise>
 <moonset>2004-07-12 4:22 PM PDT</moonset>
 <sunrise>2004-07-12 5:50 AM PDT</sunrise>
 <sunset>2004-07-12 7:58 PM PDT</sunset>
 </CelestialInfoRpt>
 </getCelestialInfoReturn>
 </soapenv:Body>

Guidance

217

G1087
Statement Validate all WSDL (Web Services Definition Language) files that describe

web services.

Rationale Manually editing a WSDL file is error-prone, work-intensive, and hard to
maintain. However, if the user wants to do it, there is no way to detect a
manually edited file from one that was auto generated. The important thing
is not how the WSDL file is generated but rather that the WSDL file is
valid. It must be validated with a WSDL validator.

Note: Not all WSDL files that are generated and valid are necessarily
interoperable.

Derived From

Justifies

Referenced By Insulation and structure guidance

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Can the WSDL file be validated?

 Procedure Obtain a WSDL validator froma source such as
http://pocketsoap.com/wsdl/.

 Examples None

NESI Part 5: Net-Centric Developer's Guide

218

G1088
Statement Use isolation design patterns such as façade, proxy, or adapter to isolate the

application from the connection and manipulation of SOAP messages.

Rationale Insulating web-services (network)-specific code using standard
abstractions such as a proxy object or an adapter will insulate the
application from changes in web-service code and make the code easier to
maintain, because it is centrally located.

Derived From

Justifies

Referenced By Insulation and structure guidance

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Are web service calls inside of the application code?

Procedure Check for proliferation of web service calls inside an application.

Examples None

2. Test Are web service calls isolated in a single adapter or proxy
object?

Procedure Check to see if all web service calls are isolated to a single
adapter or proxy object.

Examples None

3. Test Are SOAP-client calls inside the application code?

Procedure Check to see if SOAP-client code is proliferated inside the
application code?

Examples None

Guidance

219

G1090
Statement Do not hard-code a web service’s endpoint.

Rationale This causes unnecessary dependencies between the client code and the web
service that it uses.

Sometimes hard-coding may be unavoidable. For example, many tools
provided by web service vendors hard-code the web service's URL in the
generated client-side helper classes.

Derived From

Justifies

Referenced By

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Are there any hard-coded URLs in the client-side
code?

 Procedure Parse the client code looking for hard-coded URLs.

 Examples The Java code samples below illustrate how this might
be done. The first sample shows parameters that are
hard-coded; the second sample shows how parameters
and web-service endpoints are insulated.

1. Hard-coded parameters:
// Sample code that has hard-coded
parameters
// before applying insulation
public static void main
 (String[] args
) throws Exception
{ //The SOAP endpoint
 String sSoapEndpoint
 = "http://live.capescience.com:80”
 + "/ccx/AirportWeather";
 AirportWeatherClient myProxy = null;
 try
 { myProxy
 =
AirportWeatherClientFactory.create
 (sSoapEndpoint);
 System.out.println
 ("Location: "
 + myProxy.getLocation(args[0])
);
 //rest of code removed for brevity
 } // End try
 Catch (Exception exception)
 { System.out.println("Error: " +
exception);

NESI Part 5: Net-Centric Developer's Guide

220

 } // End catch
};//end of main program
2. Insulated parameters and web-service endpoints

a. Property file - this code shows the property
file itself:

/* Property file: property.dat
*/
targetUrl=http://198.253.106.75/

b. Proxy sample code
// Sample code that has
parameters and
// web service connection
through helper
// methods after applying
insulation
public interface
airportWeatherProxy
{ public abstract String
getLocation();
 // other public API's removed
for brevity
} // End airportWeatherProxy

c. Client sample code:
import java.io.*;
import java.rmi.*;
import java.util.*;
import AirportWeatherClient; //
auto-generated SOAP
 //
client from IDE */
public class WeatherProxy
 implements airportWeatherProxy
{
 //
 //code removed for brevity
 //
 public WeatherProxy
 (String propFileStr)
 { try
 { getEndPoint(propFileStr);
 } // End try
 catch(Exception e)
 { // Handle exception here
 } // End catch
 connect2SOAP();
 }// End constructor
 /* public api’s */
 public String getLocation()
 { return location;
 } // End getLocation
 . . . // Other public API’s
removed for brevity
 private void getEndPoint
 (String propsFile)

Guidance

221

 throws Exception
 { if (propsFile == null ||
propsFile.length() == 0)
 { throw new Exception
 ("SOAP EndPoint
parameter not defined");
 } // End if
 props = new Properties();
 try
 { InputStream is = new
FileInputStream(propsFile);
 props.load(is);
 is.close();
 } // End try
 catch (Exception exception
)
 { throw new Exception
 ("can't read props file
" + propsFile);
 } // End catch
 Enumeration enum =
props.propertyNames();
 while (
enum.hasMoreElements())
 { String endPointString =
null;
 String propName =
enum.nextElement().toString();
 if (propName.equals (
endPointString))
 { soapEndpoint =
props.getProperty(propName);
 break;
 } // end if
 } // End while
 }//end getEndPoint
 private void connect2SOAP()
 { try
 { myProxy
 =
AirportWeatherClientFactory.crea
te
 (soapEndpoint);
 . . . //code removed for
brevity
 } // End try
 catch (Exception exception)
 { System.out.println
 ("Error connecting to
SOAP server: "
 + exception
);
 } // End catch
 } // End connect2SOAP
 private Properties props =
null;
 private String propsFile =

NESI Part 5: Net-Centric Developer's Guide

222

null;
 private AirportWeatherClient
myProxy = null;
 private String soapEndpoint =
null;
 private String location =
null;
}//end WeatherProxy
public class Weather
{ private static WeatherProxy
myWeatherProxy = null;
 public static void main
 (String[] args
) throws Exception
 { try
 { myWeatherProxy = new
WeatherProxy (args[0]);
 } // End try
 Catch (Exception exception
)
 { throw new Exception
 ("can't connect to SOAP
server");
 } // End catch
 System.out.println
 ("Location: "
 +
myWeatherProxy.getLocation()
);
 . . . //code deleted for
brevity
 }//end main
}//end Weather

Guidance

223

G1091
Statement Do not hard code web-service-vendor specifics.

Rationale Some web-service vendors add dependencies to their products and
services, which can reduce portability and increase the cost of porting to
other web-service vendors.

Derived From

Justifies [G1236], [G1237]

Referenced By Insulation and structure guidance

Acquisition
Phase

Development

Evaluation
Criteria

See sublevel guidance to evaluate this guidance.

NESI Part 5: Net-Centric Developer's Guide

224

G1093
Statement Web services must handle SOAP exceptions and SOAP faults.

Rationale SOAP exceptions are raised when there are connective problems or
violations in the SOAP protocol between the client and the server.

Derived From

Justifies

Referenced By Error guidance

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Does the web application client have exception
handlers for SOAPExceptions?

 Procedure Check to see that the web application client has an
exception block specifically for SOAPException.

 Examples None

2. Test Does the web application client test the SOAP
response for a fault?

 Procedure Verify the web application client handles a true value
returned from the response.generatedFault
method.

 Examples None

Guidance

225

G1094
Statement Application code exposed as a web service should catch all exceptions.

Rationale Any exception can reveal system internals and thus compromise security.
Also, internal exceptions are not user friendly.

Derived From

Justifies

Referenced By Error guidance

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Does each exposed web method catch all possible
exceptions and re-throw a declared application
exception?

 Procedure Verify that each exposed web method has an
exception block that catches all possible exceptions
and then re-throws them as a declared application
exceptions.

 Examples None

2. Test Does each exposed web method catch all possible
runtime exceptions and re-throw a declared
application runtime exception?

 Procedure Verify that each exposed web method has an
exception block that catches all possible exceptions
and then re-throws them as a declared application
exceptions.

 Examples None

NESI Part 5: Net-Centric Developer's Guide

226

G1095
Statement Use W3C fault codes for all SOAP faults.

Rationale Having predefined and accepted fault codes allows consumers to handle
SOAP faults appropriately without prior knowledge of custom fault codes.

Derived From

Justifies

Referenced By Error guidance

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Does the web application throw fault codes from the
accepted list of fault codes?

 Procedure Verify that each fault code thrown by the web
application is from the accepted list of SOAP fault
codes defined by the W3C.

 Examples None

Guidance

227

G1101
Statement Use web services to bridge J2EE and .NET.

Rationale The easiest and best way to bridge J2EE and .NET is to define a web
service.

There are other ways to bridge J2EE and .NET using COTS products. If
used, these should follow the ANSI Abstract Syntax Notation One (ASN.1)
standard http://asn1.elibel.tm.fr/en/standards/index.htm#asn1.

ASN.1 is a formal notation for describing data transmitted by
telecommunications protocols. It applies regardless of language
implementation, physical representation of this data, application, and degree
of complexity. (http://asn1.elibel.tm.fr/en/introduction/index.htm).

Derived From

Justifies

Referenced By .NET Framework

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Are Java and .NET files in the project?

 Procedure Look for files with the .java, .class, .obj, .cs, .cc, or .c
extensions existing with the source code.

 Examples None

NESI Part 5: Net-Centric Developer's Guide

228

G1117
Statement Isolate topic and queue names by not hard-coding them in client code.

Rationale Since topics and queues are vendor-specific, maintain portability by
isolating the hard-coded topics and queues from the rest of the application.
To do this, use helper classes or property files.

Derived From

Justifies

Referenced By Messaging

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Does the client code use hard-coded topics and
queues in unisolated places in the application?

 Procedure Verify that all occurrences of hard-coded topics and
queues are in isolated locations within the source
code.

 Examples None

Guidance

229

G1118
Statement Localize CORBA-vendor-specific source code into separate modules.

Rationale The general guidance is to minimize CORBA vendor-specific source code,
while recognizing that vendor-specific features are necessary in certain
circumstances. However, isolating vendor-specific code reduces maintenance
effort.

Vendor capabilities tend to change more rapidly than CORBA-standard
specifications. Experience shows that vendor updates frequently require
modification to application source code, due to changing vendor interface
conventions. These modifications impose vendor-version-specific constraints
on the application, thereby complicating maintenance.

Example
Encapsulating CORBA ORB operations
The following examples show how to encapsulate binding operations for a
C++ ORB, and naming service operations for a Java ORB.

C++ ORB binder template
The code below shows a sample template for binding to the C++ ORB.
IONA’s ORBIX was used in this example.
/* ==
ServerBinder.h (Template)
this is a generic binder to ORBIX
== */
#ifndef _BINDER_H_
#define _BINDER_H_
#ifndef IOSTREAM_H
#define IOSTREAM_H
#include <iostream.h>
#endif
#ifndef STDLIB_H
#define STDLIB_H
#include <stdlib.h>
#endif
template <class SERVERNAME, class VARPTR>
class Binder
{ private:
 char* serverName;
 public:
 Binder(char* svName):serverName(svName){};
 ~Binder(){};
 int bind(VARPTR* p)
 { int attempts = 0, success = 0;
 int maxtries = 5, retval = 0;
 while ((attempts < maxtries)
 && (!success)
)

NESI Part 5: Net-Centric Developer's Guide

230

 { ++attempts;
 cout << "Binding to server, attempt "
 << attempts
 << endl;
 try
 { (*p) = SERVERNAME::_bind();
 cout << "Bound to server"
 << endl;
 success = retval = 1;
 } // End try
 catch (CORBA::SystemException &systemException)
 { cout << "SystemException, ServerBinder::bind"
 << endl
 << systemException;
 success = 1;
 retval = 0;
 } // End catch SystemException
 catch (...)
 { cout << "unknown Exception,
ServerBinder::bind"
 << endl;
 success = 1;
 retval = 0;
 } // End catch all
 } //end while
 return retval;
 } //end bind
} //end Binder
#endif

Ada ORB binder template for C++
The code below shows a C++ template for binding to an Ada ORB.
ORBexpress was used in this example.
/* ==
ada_binder.h (Template)
this is a generic binder to ORBExpress
== */
#ifndef _ADA_BINDER_H_
#define _ADA_BINDER_H_
#ifndef IOSTREAM_H
#define IOSTREAM_H
#include <iostream.h>
#endif
#ifndef STDLIB_H
#define STDLIB_H
#include <stdlib.h>
#endif
template <class SERVERNAME, class VARPTR >
class Ada_Binder
{ private:
 char* adaIorString;
 public:
 Ada_Binder
 (char* iorString)
 : adaIorString (iorString)

Guidance

231

 {};
 ~Ada_Binder(){};
 int bindToAda(VARPTR* p)
 { int attempts = 0, success = 0;
 int maxtries = 5, retval = 0;
 while ((attempts < maxtries)
 && (!success)
)
 { ++attempts;
 cout << "Binding to server, attempt "
 << attempts
 << endl;
 try
 { cout <<"adaIorString:"
 << endl
 << adaIorString
 << endl;
 (*p) = SERVERNAME::_bind(adaIorString);
//can't use string_to_object in this version
//it kills the ada IOR
// CORBA::Object_ptr myptr
 CORBA::Orbix.string_to_object
 (adaIorString);
// (*p) = SERVERNAME::_narrow(myptr);
 cout << "Bound to server" << endl;
 success = retval = 1;
 } // End try
 catch (CORBA::SystemException& systemException)
 { cout << "SystemException, “
 << “AdaServerBinder::bind"
 << endl
 << systemException;
 success = 1;
 retval = 0;
 } // End SystemException
 catch (...)
 { cout << "Unknown Exception, “
 << “AdaServerBinder::bind"
 << endl;
 success = 1;
 retval = 0;
 } // End catch all
 } // end while
 return retval;
 } // end bind
} // end ADA_Binder
#endif

Example: Naming service operations for a Java ORB
Java helper class

This example is a helper class, JavaNamingHelper.java, that
encapsulates CORBA naming service operations for all services to use. We
used Java JDK 1.4 ORB to create this example.
import java.util.*;

NESI Part 5: Net-Centric Developer's Guide

232

import org.omg.CORBA.*;
import org.omg.CORBA.ORB.*;
import org.omg.CORBA_2_3.ORB.*;
import org.omg.CosNaming.*;
import org.omg.CosNaming.NamingContext.*;
import org.omg.CosNaming.NamingContextPackage.*;
import CBRNSensors.JSLSCAD.*;
public class JavaNamingHelper
{ static NamingContext nameSvc = null;
 static org.omg.CORBA.Object objref = null;
 static JSLSCADSensor myCBRNSensor = null;
 static org.omg.CORBA.Object myobj = null;
 public JavaNamingHelper()
 {
 }
 private static void showNamingContext
 (org.omg.CORBA.ORB myorb)
 {
 public static NamingContext getNamingSvc
 (org.omg.CORBA.ORB lclorb,
 String nameSvcName
)
 { NamingContext lclNameSvc = null;
 try
 { org.omg.CORBA.Object nameSvcObj
 = lclorb.resolve_initial_references
 ("NameService");
 // . . . other business logic removed
 // for brevity
 } // End try
 catch(org.omg.CORBA.COMM_FAILURE cf)
 { . . . // error code goes here
 } // End cstch
 catch (org.omg.CORBA.ORBPackage.InvalidName
invalidName)
 { . . . // error code goes here
 } // End catch
 catch (SystemException systemException)
 { . . .// error code goes here
 }
 } // End getNamingSvc
 public static org.omg.CORBA.Object getObjFromNameSvc
 (org.omg.CORBA.ORB myorb,
 String targetSensorName
)
 { . . . // business logic goes here
 } //end getObjFromNameSvc
 public static int setObj2NameSvc
 (org.omg.CORBA.ORB myorb,
 BasesSensor mySensor,
 String targetSensorName
)
 {. . . // business logic goes here
 }//end setObj2NameSvc
}; //end class JavaNamingHelper

Java server implementation

Guidance

233

The code below is a sample Java server implementation that uses the naming
service helper class.
import java.io.*;
import java.util.*;
import org.omg.CORBA.*;
import org.omg.CORBA.ORB.*;
import org.omg.CORBA_2_3.ORB.*;
import org.omg.PortableServer.*;
import org.omg.CosNaming.*;
import org.omg.CosNaming.NamingContext.*;
import org.omg.CosNaming.NamingContextPackage.*;
class MyServer
{ public static Properties props;
 public static ORB myorb = null;
 public static NamingContext nameSvc = null;
 public static RootSensor mySensor = null;
 public static String propertyFilePath = null;
 public static final String MY_SENSOR_NAME = "MYSENSOR";
 static public void main(String[] args)
 { // handle arguments
 System.out.println(" CORBA Server starting...\n");
 try
 { // Initialize the ORB.
 myorb = ORB.init(args, props);
 //instantiate servant and create ref
 POA rootPOA
 =
POAHelper.narrow(myorb.resolve_initial_references
 ("RootPOA");
 . . . // rest of initialization code goes here
 } // End try
 catch (org.omg.CORBA.ORBPackage.InvalidName
invalidName)
 { . . . //error code goes here
 } // End invalidName
 // other exception types to catch go here
 catch (SystemException systemException)
 { System.err.println (systemException);
 } // End systemException
 // naming service hookup
 JavaNamingHelper.setObj2NameSvc
 (myorb,mySensor,
 MY_SENSOR_NAME
);
 try
 { System.out.println(" Ready to service requests\n");
 myorb.run();
 } // End try
 catch(SystemException systemException)
 { System.err.println (systemException);
 } // End catch systemException
 } // End static block
} // End MyServer

Java client implementation

The code below is a sample client implementation that uses the naming

NESI Part 5: Net-Centric Developer's Guide

234

service helper class.
import java.io.*;
import java.util.*;
import org.omg.CORBA.*;
import org.omg.CORBA.ORB.*;
import org.omg.PortableServer.*;
import org.omg.CosNaming.*;
import org.omg.CosNaming.NamingContext.*;
import org.omg.CosNaming.NamingContextPackage.*;
import CBRNSensors.*;
import CBRNSensors.JSLSCAD.*;
import CBRNSensors.JSLSCAD.Impl.*;
public class JSLSCADClient
{ public static Properties props;
 public static ORB myorb = null;
 public static String mySensorStr = null;
 private static org.omg.CORBA.Object objref = null;
 // helper class to handle orb connections etc.
 private static void connectToOrb
 (String args[])
 { try
 { myorb = ORB.init(args,props);
 } // End try
 catch(SystemException systemException)
 { System.err.println
 (systemException.toString());
 return;
 } // End catch systemException
 System.out.println("get naming service\n");
 objref
 = JavaNamingHelper.getObjFromNameSvc
 (myorb,
 mySensorStr
);
 sensorObj
 = JSLSCADSensorHelper.narrow(objref);
 try
 { POA rootPOA
 =
POAHelper.narrow(myorb.resolve_initial_references
 ("RootPOA");
 rootPOA.the_POAManager().activate();
 } // End try
 catch(org.omg.CORBA.ORBPackage.InvalidName
invalidName)
 { //error code here
 } // End catch InvalidName
 . . . // other exceptions that may be required
 // for the operations
 catch(SystemException systemException)
 { System.err.println
 ("System Exception during ops");
 System.err.println
 (systemException);
 } // End systemException
 } // End connectToOrb

Guidance

235

 //helper method to handle orb specific issues
 private static void disconnectFromOrb()
 { . . . // business logic goes here
 } // End disconnectFromOrb
 public static void main
 (String args[])
 { // Initialize the ORB.
 System.out.println ("Initializing the ORB\n");
 props = new Properties();
 // load property values
 // use helper methods
 connectToOrb (args);
 try
 { . . . // client business logic goes here
 } // End try
 catch (Exception exception)
 { . . . // Exception handling code goes here
 } // End exception handler
 disconnectFromOrb();
 } // end main
} // end client

Derived From [G1008]

Justifies [G1202]

Referenced
By

Acquisition
Phase

Development

Evaluation
Criteria

The following evaluation criteria relate to non-IDL compiler auto-generated
code. Further, the criteria relate to modules which are not annotated to contain
vendor-specific code.

1. Test Does the module contain vendor names anywhere in
code text?

 Procedure Review the code looking for a service that can be used
to obtain configuration.

 Examples None

2. Test Are any non-CORBA compliant CORBA:: objects
declared or defined in the module?

 Procedure Review the code for a service that can be used to
obtain configuration.

 Examples None

NESI Part 5: Net-Centric Developer's Guide

236

G1119
Statement Isolate user-modifiable configuration parameters from the CORBA

application source code.

Rationale Configuration parameters control the behavior of the CORBA ORB
service environment and client/service processes during startup, execution,
and termination. This parameterization allows execution-time control
modification without having to rebuild, reinstall, or redeploy.

Configuration defines the state of the client-and-service environment
throughout the lifetime of the processes involved. This relates to
considerations such as the allocation of threading and resources, POA
policies, the instantiation of servants and their invocations, failure and
security behavior, connection management, quality of service
prioritization, and so forth. The point is that CORBA provides an
extremely complex but flexible environment for distributed computing
interaction. Consequently, the designer requires flexible guidance to
handle this option-rich environment.

Configuration processes and their related parameters fall into two
categories. The first involves configuration matters, which are defined to
be perpetually static by the system architecture. The second involves
matters that are intended to be modifiable by users.

The first category, immutable configuration settings, relates to
fundamental underlying assumptions that are foundational for the
implementation. These are matters for which no user modification is ever
intended as it would lead to unspecified behavior. Consider the example of
a service implementation that is programmed to be single threaded. In this
case, multi-threading controls are irrelevant and multiple instantiation
would lead to dangerous confusion. For immutable configuration
parameters, localized and well-commented implementation in the
application source code is appropriate.

For user-modifiable configuration settings, there are two further by-design
divisions. The first involves configuration settings that are intended to be
accessible by distributed processes. The second involves host-specific
settings which relate to resources locally available, for which remote
access is not desired. These are discussed in the related sublevel guidance

Derived From

Justifies [G1204], [G1205]

Referenced By CORBA

Acquisition
Phase

Development

Evaluation
Criteria

See sublevel guidance to evaluate this guidance.

Guidance

237

G1121
Statement Do not modify CORBA IDL compiler auto-generated stubs and skeletons.

Rationale The purpose of the IDL auto-generated stub and skeleton files is to provide a
source code facility/mechanism for the developer in a specific language to use
the IDL-described object interface in that specific language. The internal
content of these files changes with the application’s IDL modification, with
IDL compiler-environment configuration settings, and with vendor-product
compiler and ORB upgrades. By design, these files are not intended to be
modified by the application developer. Developer modification of any auto-
generated stub or skeleton file will typically lead to very severe maintenance
hazards and failed application rebuild results.

The stub files describe the language source-code interface from the client side.
Their use involves including the client stub header in the application’s call
invocation code.

The skeleton files describe the language source code interface from the service
implementation side. Their use involves including the skeleton header in the
application’s operator implementation code. Their use also requires developer
modification of a renamed clone of the auto-generated skeleton body file.
These techniques are described in every ORB vendor’s programming reference
manuals.

Derived
From

Justifies

Referenced
By

CORBA

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Is any application code contained in the auto-generated code?

 Procedure Inspect the auto-generated file creation/modification dates to
verify that no tampering occurred after the IDL compilation step
in the build process.

 Examples The following examples are all based upon a single CORBA IDL
interface.

MyIdlInterface.idl
interface MyIdlInterface
{
 readonly attribute string version;
 void stop();
 void start();
 string error();
}; // End MyIdlInterface

NESI Part 5: Net-Centric Developer's Guide

238

ORBExpress compiler
The ORBExpress IDL compiler generates these files:

• myIdlInterface.h - Client-side stub header

• myIdlInterface.cxx - Client-side stub implementation

• MyIdlInterface_s.h - Abstract servant header

• MyIdlInterface_s.cxx - Abstract servant implementation

• MyIdlInterface_impl.h - Server implementation header

• MyIdlInterface_impl.cxx - Server implementation
implementation

Note: The only files that should be edited are
MyIdlInterface_impl.h and MyIdlInterface_impl.cxx. The IDL
compiler checks for the existence of the implementation (i.e.
_impl) files and will not overwrite them.

MyIdlInterface_impl.cxx
// Generated for interface MyIdlInterface
// in myIdlInterface.idl
#include "MyIdlInterface_impl.h"
MyIdlInterface_impl::MyIdlInterface_impl
 (PortableServer::POA* oe_poa,
 const char* oe_object_id
) : POA_MyIdlInterface
 (oe_object_id,
 oe_poa
)
{ . . . // TO DO: add implementation code here
} // emd constructor
MyIdlInterface_impl::MyIdlInterface_impl
 (const MyIdlInterface_impl& obj)
 : POA_MyIdlInterface(obj)
{ . . . // TO DO: add implementation code here
} // End constructor
MyIdlInterface_impl::~MyIdlInterface_impl()
{ . . . // TO DO: add implementation code here
} // End destructor
CORBA::Char* MyIdlInterface_impl::version
 (CORBA::Environment& _env)
{ return CORBA::string_dup(_version);
} // End version
void MyIdlInterface_impl::stop
 (CORBA::Environment& _env)
{ . . . // TO DO: add implementation code here
} // End stop
void MyIdlInterface_impl::start
 (CORBA::Environment& _env)
{ . . . // TO DO: add implementation code here
} // End start
CORBA::Char* MyIdlInterface_impl::error
 (CORBA::Environment& _env)

Guidance

239

{ CORBA::Char* result;
 . . . // TO DO: add implementation code here
 return result;
} // End error

Java JDK compiler
The Java JDK IDL compiler generates these files:

• MyIdlInterface.java

• MyIdlInterfaceHelper.java

• MyIdlInterfaceHolder.java

• MyIdlInterfaceOperations.java

• MyIdlInterfacePOA.java

• _MyIdlInterfaceStub.java

Note: Do not edit any of these files. Place the server
implementation code in a file that extends from
MyIdlInterfacePOA.java. This isolates the ORB implementation
and prevents subsequent IDL compilations from accidentally
overwriting the files. The code for the auto-generated
MyIdlInterfacePOA.java class and the implementation class
appears below:

MyIdlInterfacePOA.java
/**
* MyIdlInterfacePOA.java .
* Generated by the IDL-to-Java compiler
* (portable), version "3.1"
* from myIdlInterface.idl
*/
public abstract class MyIdlInterfacePOA
 extends org.omg.PortableServer.Servant
 implements MyIdlInterfaceOperations,
 org.omg.CORBA.portable.InvokeHandler
{ . . . // rest of the auto-generated code
removed for brevity
} // End MyIdlInterfacePOA

MyIdlInterfaceImpl.java
package myIdlImpl;
import org.omg.CORBA.*;
import org.omg.CORBA.ORB.*;
import org.omg.CORBA_2_3.ORB.*;
import org.omg.PortableServer.*;
public class MyIdlInterfaceImpl
 extends MyIdlInterfacePOA
{
 private String strVersion;
 private String errString;
 public String version ()
 { . . . // implementation code goes here

NESI Part 5: Net-Centric Developer's Guide

240

 return strVersion;
 } // End version
 public void stop ()
 { . . . // implementation code goes here
 } // End stop
 public void start ()
 { . . . // implementation code goes here
 } // End start
 public String error ()
 {. . . // implementation code goes here
 return errString;
 } // End error
} // End MyIdlInterfaceImpl

Guidance

241

G1123
Statement Use the “Fat Operation Technique” in IDL operator invocation.

Rationale This reduces the CORBA messaging overhead. The performance cost of
network CORBA messaging is determined by two factors: latency and
marshaling rate. Call latency is the minimum cost of sending any message
at all. The marshaling rate is determined by the sizes of sending and
receiving parameters and of return values.

In the situation of a large number of objects involving objects that hold a
small amount of stat, the call latency cost far exceeds the marshalling
costs. Taking advantage of this reality, the “Fat Operation Technique”
involves constructing structure objects which hold an aggregation of
related attributes, and using the resulting structures in operation invocation
parameters and returns. This amounts to transferring a larger amount of
information with each network transaction.

For more information, see Advanced CORBA Programming with C++ by
Henning & Vinoski, 1999 Addison Wesley, Chapter 22.

Derived From

Justifies

Referenced By CORBA

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Does the IDL contain function calls which have
structure objects that are passed as parameters or
returned from operators?

 Procedure Inspect the IDL file and manually check for
parameters or returns using objects defined as
structures, and verify that they are passed from
methods also declared in the IDL.

 Examples None

NESI Part 5: Net-Centric Developer's Guide

242

G1126
Statement Validate all WSDL files.

Rationale WSDL files can be difficult to produce, and there are different versions of
the WSDL specification available. In order to ensure interoperability, the
WSDL files need to be validated.

Derived From

Justifies

Referenced By WSDL guidance

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Are all WSDL files valid?

 Procedure Download a validation tool and test WSDL files.

Tool at ws-i.org:

http://www.ws-
i.org/deliverables/workinggroup.aspx?wg=testingtools

Tool at eclipse.org:

http://dev.eclipse.org/viewcvs/indextech.cgi/wsvt-
home/main.html?rev=1.20

Tool at xMethods.net:

http://xmethods.net/ve2/Tools.po

 Examples Place any examples here, preceded by a brief
description.

Guidance

243

G1127
Statement Use OASIS UDDI specification 2.0 or higher.

Rationale UDDI provides a registration for services, and UDDI 2.0 has become a
standard method for publishing discovery services.

Derived From

Justifies

Referenced By UDDI guidance

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Are the web services registered in a UDDI registry?

 Procedure Verify the registration in the UDDI registry.

 Examples None

2. Test Is the registry UDDI 2.0 or higher?

 Procedure Determine if the particular UDDI registry is UDDI
Version 2.0 or higher.

 Examples None

NESI Part 5: Net-Centric Developer's Guide

244

G1131
Statement All UDDI inquiries should use the standard UDDI APIs.

Rationale There is a standard API that uses SOAP messages to communicate with the
UDDI registry. To increase compatibility and portability, use this API
exclusively.

Derived From

Justifies

Referenced By UDDI guidance

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Are all the interfaces to the UDDI registry made
using the UDDI standard API?

 Procedure The standard API for UDDI is SOAP based. Requests
and responses are passed using XML documents. Test
the traffic flow between the client and the UDDI
registry for messages that are defined in the UDDI
specification. Use standard libraries to send and
receive the messages (e.g. JUDDI for Java).

Checking for the use of packages like JUDDI does
not require the application to be running.

 Examples The following is an example as provided in the UDDI
API reference:
http://uddi.org/pubs/ProgrammersAPI-V2.04-
Published-20020719.htm#_Toc25137712.

find_binding
The find_binding API call returns a
bindingDetail message that contains zero or
more bindingTemplate structures matching the
criteria specified in the argument list.

Syntax
<find_binding
 serviceKey="uuid_key"
 [maxRows="nn"] generic="2.0"
 xmlns="urn:uddi-org:api_v2" >
 [<findQualifiers/>]
 <tModelBag/>
</find_binding>

Arguments

serviceKey: This uuid_key is used to specify a

Guidance

245

particular instance of a businessService
element in the registered data. Only bindings in the
specific businessService data identified by the
serviceKey passed will be searched.

maxRows: This optional integer value allows the
requesting program to limit the number of results
returned.

findQualifiers: This optional collection of
findQualifier elements can be used to alter the
default behavior of search functionality. See the
findQualifiers appendix for more information.

tModelBag: This is a list of tModel uuid_key
values that represents the technical fingerprint of a
bindingTemplate structure contained within the
businessService specified by the
serviceKey value. Only bindingTemplates
that contain all of the tModel keys specified will be
returned (logical AND). The order of the keys in the
tModel bag is not relevant.

Returns

This API call returns a bindingDetail message
upon success. In the event that no matches were
located for the specified criteria, the
bindingDetail structure returned will be empty
(i.e., it contains no bindingTemplate data.) This
signifies a zero match result. If no arguments are
passed, a zero-match result set will be returned.

In the event of an overly large number of matches (as
determined by each Operator Site), or if the number
of matches exceeds the value of the maxRows
attribute, the Operator site will truncate the result set.
If this occurs, the response message will contain the
truncated attribute with the value “true”.

Caveats
If any error occurs in processing this API call, a
dispositionReport element will be returned to
the caller within a SOAP Fault. The following error
number information will be relevant:

E_invalidKeyPassed: signifies that the uuid_key
value passed did not match with any known
serviceKey or tModelKey values. The error
structure will signify which condition occurred first,
and the invalid key will be indicated clearly in text.

E_unsupported: signifies that one of the

NESI Part 5: Net-Centric Developer's Guide

246

findQualifier values passed was invalid. The
invalid qualifier will be indicated clearly in text.

Guidance

247

G1132
Statement Implement the data tier using readily available COTS RDBMS products that

implement the SQL standard and provide a rich set of generic capabilities
such as row-level locking, stored procedures, triggers, and a high-level
language API interface.

Rationale COTS RDBMSs are mature technical products, the capabilities of which
are being continually expanded to adapt to and accommodate new
technologies. Moreover, there is a large technical community able to
develop and maintain data systems based on these products. It is likely that
a COTS DBMS will provide all of the data tier capabilities required by the
developer.

Derived From

Justifies

Referenced By Implementations

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Is the proposed COTS DBMS product a readily
available and supportable COTS product that
implements the SQL standard?

 Procedure Verify that the COTS DBMS product is widely in
use in the DoD environment (e.g., Oracle, SqlServer,
or DB2), has a large support community, and is
likely to be supported for the lifecycle of the project.

 Examples None

NESI Part 5: Net-Centric Developer's Guide

248

G1141
Statement Use standard data models developed by Communities of Interest (COI) as

the basis of program or project data models.

Rationale Standard data models are under development in many areas of the DoD
and will be stored in and made available from DoD metadata repositories.
The use of these models or portions thereof supports interoperability
among applications. The C2IEDM data model, which is used in the
Command and Control area, is an example of one of these standard data
model development efforts.

Derived From

Justifies

Referenced By Data modeling

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Have standard data models been considered for use
in the system?

 Procedure Determine whether standard DoD data models exist
for the technical areas accommodated in the system
requirements. Verify that the data model developed
for the application accommodates the use of these
data models.

 Examples None

2. Test If the system is a command-and-control application,
has preference been given to the use of the Command
& Control Information Exchange Data Model
(C2IEDM) rather than locally defined values?

 Procedure Examine the system data model and verify that the
C2IEDM data model has been incorporated.

 Examples None

Guidance

249

G1144
Statement Develop a two-level database model. One level captures the conceptual or

logical aspects, and the other level captures the physical aspects.

Rationale There are a number of modeling tools available that permit the
development of Entity-Relationship diagrams. Developers can use these
tools to create conceptual models that are independent of the DBMS in
which the system is implemented, and to develop the physical models that
are translated directly into DDL (data definition language), the SQL code
used to create the database. Using a conceptual model permits
implementation or reuse of a complex ERD on multiple DBMS products.

Derived From

Justifies

Referenced By Data modeling

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Has a separate conceptual or logical model been
developed?

 Procedure Verify the presence of a conceptual or logical model.

 Examples None

NESI Part 5: Net-Centric Developer's Guide

250

G1146
Statement The conceptual/logical data model should contain information necessary to

generate a data dictionary.

Rationale A data dictionary is an integral part of every database system. A
description of each data item and the units in which the contents are
measured are essential. Database modeling tools provide a mechanism for
storing information necessary to produce a data dictionary.

Derived From

Justifies

Referenced By Data modeling

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Has description information been included in the
data model?

 Procedure Examine the physical data model.

 Examples None

Guidance

251

G1147
Statement Domain analysis should define the input-data validation constraints.

Rationale Domain analysis is an integral part of any database system. Domains
describe the set or range of values that are acceptable for a specific data
item. These include, at a minimum:

• Data type

• Precision

• Minimum

• Maximum

• Length

These values are validated in the database via check constraints on the data
item. These check constraints are generated from the physical data model
as part of the DDL.

Derived From

Justifies

Referenced By Data modeling

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Has domain analysis been included in the data
model?

 Procedure Examine the physical data model.

 Examples None

NESI Part 5: Net-Centric Developer's Guide

252

G1148
Statement Normalize the conceptual/logical model.

Rationale Normalization is a central tenet of relational database theory. A database
should usually be normalized to at least third normal form. Although there
are seven normal forms, normalization beyond third normal form is rarely
considered in practical database design.

Derived From

Justifies

Referenced By Data modeling

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Is the database design in third normal form?

 Procedure Examine the conceptual/logical data model.

 Examples None

Guidance

253

G1151
Statement Define declarative foreign keys for all relationships between tables to

enforce referential integrity.

Rationale Foreign key constraints enforce referential integrity. The principle of
referential integrity requires that the foreign key values of a child table are
either null or match exactly those of the primary key in the parent table.

Derived From

Justifies

Referenced By RDBMS internals

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Have foreign-key constraints been incorporated into
the database?

 Procedure Examine the database to determine whether foreign-
key constraints have been included in the database
creation scripts and created in the database.

 Examples None

NESI Part 5: Net-Centric Developer's Guide

254

G1154
Statement Use stored procedures for operations that are focused on the insertion and

maintenance of data.

Rationale Current software design methodologies and architectures call for the
implementation of an n-tiered architecture with business rules in the middle
tier and data stored in a separate data tier. When multiple applications
access a common database, however, the rules may be best located at the
data-tier level. Otherwise, changes in one application would have to be
coordinated across all applications. Thus their use to implement detailed
business logic and algorithms should be limited to enterprise databases
used by multiple applications.

Derived From

Justifies

Referenced By RDBMS internals

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Are database triggers used?

 Procedure Check for stored procedures that are triggered on
insertion, deletion, and update events.

 Examples CREATE TRIGGER PersonCheckAge
AFTER INSERT OR UPDATE OF age
ON Person
FOR EACH ROW
BEGIN
 IF (:new.age < 0) THEN
 RAISE_APPLICATION_ERROR
 (-20000,
 'no negative age allowed'
);
 END IF;
END;.

Guidance

255

G1155
Statement Use triggers to enforce referential or data integrity, not to perform complex

business logic.

Rationale Triggers are fired on events. Current software design methodologies and
architectures call for the implementation of an n-tiered architecture with
business rules in the middle tier and data stored in a separate data tier.
Implementing business logic in triggers, as well as in the middle tier,
violates this concept.

Derived From

Justifies

Referenced By RDBMS internals

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Has business logic been incorporated into database
triggers?

 Procedure Examine the database trigger code to determine
whether business logic or calls to stored procedures
incorporating business logic have been coded into
them.

 Examples None

NESI Part 5: Net-Centric Developer's Guide

256

G1190
Statement Use a build tool.

Rationale A build tool allows for the encapsulation of building instructions into
machine-readable files or sets of files. The instructions can be successfully
and consistently repeated.

Derived From

Justifies [G1218], [G1219], [G1220], [G1221], [G1222], [G1223], [G1224],
[G1225]

Referenced By Automate the build process

Acquisition
Phase

Development

Evaluation
Criteria

See sublevel guidance to evaluate this guidance.

Guidance

257

G1200
Statement Define all external resources by using a separate resource-ref element for

each resource.

Rationale This allows the source code to look up a resource by a "virtual" name that
is mapped to the actual JNDI location at deployment time.

Derived From [G1079]

Justifies

Referenced By J2EE environment, Java Naming & Directory Interface (JNDI)

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Are there any resource references that are defined in
the application code?

 Procedure Check the code for connect operations that do not use
a JNDI lookup.

 Examples None

NESI Part 5: Net-Centric Developer's Guide

258

G1201
Statement Define configuration data such as environment variables, parameters, and

properties by using resource-env-ref elements.

Rationale Configuration data is basically a name-value pair. This allows the tailoring
of the application to different contexts without having to modify source
code and consequently rebuild and retest.

Derived From [G1079]

Justifies

Referenced By J2EE environment, Java Naming & Directory Interface (JNDI)

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Are there any environment variables that must be
defined before the application can be run?

 Procedure Check OS startup scripts (e.g., bat, cmd, csh,
bsh) for the use of any environment variables.

Check the OS environment for any installation-
defined environment variables.

 Examples None

2. Test Are there any property files that need to be defined
before the application can be run?

 Procedure Check for the existence of properties files.

 Examples None

3. Test Are there any parameters that must be defined before
the application can be run?

 Procedure Check for any startup parameters provided on the
startup command line.

 Examples None

Guidance

259

G1202
Statement Use the CORBA Portable Object Adapter instead of the Basic Object

Adapter.

Rationale The CORBA Basic Object Adapter (BOA) was the CORBA Version 1
specification for the client-server object capability. The BOA specification
was found to be so incomplete that vendor-specific interpretations were
required for operable implementation. In CORBA Version 2, the Portable
Object Adapter (POA) was significantly more complete and flexible. In the
current marketplace, POA implementations are standard and, in quality
implementations, are not vendor-specific. Consequently, using POA
eliminates one significant area of vendor-specific coding.

BOA POA

Focuses on CORBA server
implementations and not
CORBA object implementations

Naming convention issues on
server side

Tightly coupled to ORB
implementation

Non-standardized way to
connect to ORB

Four activation models for server
processes

Services for lifecycle
management

Abstract layer between ORB and
object

Standard, portable interface for
communicating with ORB
runtime

Two servant incarnation styles

Derived From [G1118]

Justifies

Referenced By CORBA

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Does any CORBA application code reference the
CORBA::BOA identifier?

 Procedure Review the code for the use of the CORBA::BOA
identifier.

 Examples 1. BOA coding example

a. Client side - The code below shows a C++ CORBA
client BOA initialization for the ORBIX ORB. Other
ORB vendors may have different initialization
sequences.
int main
 (int argc,

NESI Part 5: Net-Centric Developer's Guide

260

 char **argv
)
{ MyServer_var MyVar;
 CORBA::ORB_ptr myOrbPtr
 = CORBA::ORB_init(argc,
argv,"Orbix");
 try
 { // The default is the local host:
 MyVar =
MyServer::_bind(":ServerName");
 } // End try
 catch (CORBA::SystemException &sysEx
)
 { cerr << "Unexpected system
exception" << endl;
 cerr << &sysEx;
 exit(1);
 } // End CORBA::SystemException
 catch(...)
 { // an error occurred while trying
 // to bind to the grid object.
 cerr << "Bind to object failed" <<
endl;
 cerr << "Unexpected exception " <<
endl;
 exit(1);
 } // End catch ...
} // End main
b. Server side - Use the code below as a model. This
example shows a C++ CORBA server BOA init for
the ORBIX ORB. For BOA, other ORBS will have a
different initialization sequence.
try
{ MyObject::myOrb_
 = CORBA::ORB_init(argc, argv,
"Orbix");
 MyObject::myboa_
 = MyObject::myOrb_->BOA_init(argc,
argv, "Orbix_BOA");
} // End try
catch (CORBA::SystemException &sysEx)
{ //some exception handling code
} // End catch
try
{ NoeLoggerCfg::myboa_-
>impl_is_ready("MyServiceName",
 CORBA::ORB::INFINITE_TIMEOUT);
} // End try
catch (CORBA::SystemException &sysEx)
{ //exception handling code
}
2. POA coding example

a. Client side - This example shows a C++ CORBA
client POA init for the ORBIX ORB. For BOA, other

Guidance

261

ORBS will have a different initialization sequence.
int main
 (int argc,
 char **argv
)
{ CORBA::ORB_var myOrb =
CORBA::ORB_init(argc, argv);
 try
 { CORBA::Object_var obj
 = ... // however you get the
object reference
 if(CORBA::is_nil (obj))
 { cerr << "Nil object reference" <<
endl;
 throw 0;
 } // End if
 } // End try
 catch (CORBA::SystemException &sysEx
)
 { cerr << "Unexpected system
exception" << endl;
 cerr << &sysEx;
 exit(1);
 } // End catch CORBA::SystemException
 catch (...)
 { cerr << "Unexpected system
exception" << endl;
 exit(1);
 } // End catch ...
 myinterface::myobject_var myvar;
 try
 { myvar =
myinterface::myobject::_narrow(obj);
 } // End try
 catch (CORBA::SystemException &sysEx)
 { cerr << "Unexpected system
exception" << endl;
 cerr << &sysEx;
 exit(1);
 } // End catch CORBA::SystemException
} // End main
b. Server side - Use the code below as a model. This
example shows a C++ CORBA server POA init for
the ORBIX ORB. For POA, other ORBS will have a
different initialization sequence.
int main
 (int argc,
 char *argv[]
)
{ try
 { // initialize the ORB
 orb_var orb = CORBA::ORB_init(argc,
argv, "Orbix");
 // obtain an object reference for
the root POA

NESI Part 5: Net-Centric Developer's Guide

262

 object_var obj
 = orb->resolve_initial_references
(“RootPOA");
 POA_var poa = POA::_narrow(obj);
 // incarnate a servant
 My_Servant_Impl servant;
 // Implicitly register the servant
with the root POA
 obj = servant._this ();
 //start the POA listening for
requests
 poa -> the_POAManager ()->activate
();
 //run the orb’s event loop
 orb->run ();
 } // End try
 catch (CORBA::SystemException &sysEx
)
 { // some exception handling code
 } // End catch
} // End main

Guidance

263

G1203
Statement Localize frequently used CORBA-specific code in modules that multiple

applications can use.

Rationale In a family of applications, similar patterns of CORBA ORB invocation
sequences frequently arise. This is common in service object initialization,
policy association, discovery, binding, and release handling. Implementing
this functionality in a utility library paradigm localizes the code to reduce
maintenance and facilitate extensibility, and assures consistency across the
family of applications.

Derived From

Justifies

Referenced By

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Do the standard object initialization CORBA
invocations occur in more than one module?

 Procedure The presence of “CORBA::ORB_var” or
“CORBA::ORB_init” in C++ indicates ORB
initialization. The presence of
“CORBA::Object_var” in C++ indicates ORB
access.

 Examples None

2. Test Do the standard object policy association CORBA
invocations occur in more than one module?

 Procedure The presence of “CORBA::PolicyList” in C++
indicates policy presence.

 Examples None

3. Test Do the standard object policy association CORBA
invocations occur in more than one module?

 Procedure The presence of “CORBA::PolicyList” in C++
indicates policy presence.

 Examples None

4. Test Do the standard object discovery CORBA invocations
occur in more than one module?

 Procedure The presence of
“Resolve_NamingService()”in C++ indicates
intended access to one of CORBA’s discovery
capabilities.

 Examples None

NESI Part 5: Net-Centric Developer's Guide

264

5. Test Do the standard object binding and release CORBA
invocations occur in more than one module?

 Procedure The presence of “::_narrow(obj.in())” or
“CORBA::is_nil(” in C++ indicates activity
associated with obtaining and validating an object
binding to a legitimate reference. The presence of
“CORBA(release)(” in C++ indicates intended release
of a CORBA-bound object reference.

 Examples None

Guidance

265

G1204
Statement Create configuration services to provide distributed user control of the appropriate

configuration parameters.

Rationale For user-modifiable configuration settings that are intended to be accessible by
distributed processes at runtime, the appropriate mechanism for implementation
involves CORBA services. The first form is a network service to be invoked as a
client by the target system application at initialization. This can support a
consistent, network-wide distribution of startup parameters. The second form is a
service implemented by the target application which allows communication to the
application during execution (after startup). This allows real-time configuration
changes for matters such as POA instantiation threading policies to address load
management.

Derived
From

[G1119]

Justifies

Reference
d By

CORBA

Acquisitio
n Phase

Development

Evaluation
Criteria

1
.

Test Is a service defined in the IDL to obtain the configuration parameters?

 Procedur
e

Review the code for a service that can be used to obtain configuration.

 Example
s

The following code is an example of a CORBA server that instantiates a
configuration service. The service manages the individual configuration
parameters for the servers on the ORB.

Ada example
CORBA.ORB.IIOP_English;
pragma Elaborate_All(CORBA.ORB.IIOP_English);
with CORBA ;
with CORBA.BOA ;
with CORBA.ORB ;
with CORBA.Object ;
with Configuration.Impl ;
with Configuration.Helper ;
with Ada.Exceptions ;
with Ada.Text_IO ;
with my_CORBA ;
with Event_Ada_API ;
procedure Configuration_Server is
 -- required for OrbExpress
 First_Variable : CORBA.ORB.Life_Span ;
 -- declare the object instance
 Configuration_Object : Configuration.Ref ;
 --variables needed for ior writing

NESI Part 5: Net-Centric Developer's Guide

266

 No_Timeout : constant := 0.0;
 Config_Name : constant String
 := Configuration.Helper.Simple_Name ;
 Config_Host : Corba.String ;
 Config_Port : Corba.String ;
begin -- Configuration_Server
 -- create (and initialize) the object
 -- config file is read and the port needed
 -- is in there
 Configuration_Object
 := Configuration.Impl.Create(Config_Name) ;
 GET_HOSTNAME:
 begin
 Config_Host
 := Configuration.Get_String
 (Self => Configuration_Object,
 Name => Corba.To_Corba_String
 ("Local_Host_Shortname")
);
 exception -- GET_HOSTNAME
 when others =>
 Ada.Text_IO.Put_Line
 ("ERROR: Missing parameter”
 & “<Local_Host_Shortname> "
 & "in the config_parameters.txt file."
);
 end GET_HOSTNAME;
 GET_CS_PORT:
 begin
 Config_Port
 := Configuration.Get_String
 (Self => Configuration_Object,
 Name => Corba.To_Corba_String
 ("Config_Service_Port")
);
 Exception -- GET_CS_PORT
 when others =>
 Ada.Text_IO.Put_Line
 ("ERROR: Missing parameter “
 & “<Config_Service_Port> "
 & "in the config_parameters.txt file."
);
 end GET_CS_PORT;
 Ada.Text_IO.Put_Line
 ("Host => "
 & Corba.To_Standard_String(Config_Host)
 & " Port => "
 & Corba.To_Standard_String(Config_Port)
);
 --timeout 0 so we can write IOR out
 CORBA.BOA.Impl_Is_Ready
 (Time_Out => No_Timeout,
 Server_Instance_Name => Config_Name,
 Listen_On_Endpoints =>
 "tcp://"
 & Corba.To_Standard_String(Config_Host)
 & ":"

Guidance

267

 & Corba.To_Standard_String(Config_Port)
);
 -- --
--
 -- HERE IS WHERE CODE FOR THE IOR TO BE
 -- USED ON THE C++ ORB
 -- --
--
 -- get the IOR and write it to disk
 my_CORBA.Write_IOR_To_File
 (Server_Name => Config_Name,
 Server_Ref =>
 CORBA.Object.Ref(Configuration_Object)
);
 READY_BLOCK:
 begin
 -- notify subscribers of availability
 -- of configuration parameters via the
 -- event service
 Event_Ada_API.Send
 (Channel_Name => "Config_Channel",
 Event => "Configuration Service
Ready."
);
 Exception - READY_BLOCK
 when others =>
 Ada.Text_IO.Put_line
 ("Configuration_Server : “
 & Exception sending ready signal."
);
 end READY_BLOCK;
 Ada.Text_IO.Put_line
 ("Configuration_Server : “
 & Configuration Service Ready."
);
 CORBA.BOA.Impl_Is_Ready
 (Time_Out => CORBA.Infinite_Timeout,
 Server_Instance_Name => Config_Name
) ;
exception -- Configuration_Server
 when X_Other: others =>
 Ada.Text_IO.Put_line
 ("Configuration_Server : "
 & Ada.Exceptions.Exception_Name(X_Other)
);
end Configuration_Server ;
C++ example

The following code snippets depict a C++ server that instantiates a
version collection service for an About box. It uses the IORs from the
servers on the Ada ORB via the IOR files, and invokes those objects to
get version information. It uses the utility templates for binding. It
exemplifies the approach described in Encapsulate CORBA ORB
operations for C++.

Note: This was done on the ORBIX C++ and Ada ORBs.

NESI Part 5: Net-Centric Developer's Guide

268

#include <iostream.h>
#include <rw/cstring.h>
#ifndef _STDIO_H
#include <stdio.h>
#endif
#ifndef _STRING_H
#include <string.h>
#endif
#ifndef _STDLIB_H
#include <stdlib.h>
#endif
#ifndef _ASSERT_H
#include <assert.h>
#endif
// Include files for all the objects desired for
// collecting version information
//Ada configuration service
#ifndef configuration_hh
#include <configuration.hh>
#endif
// include files for other desired services;
// removed for brevity
// other support objects and utilities
#ifndef _CORBA_UTILS__
#include <corba_utils.h>
#endif
#ifndef __LOG_API_H__
#include <log_api.h>
#endif
#ifndef _VERSION_AGENT_GLOBALS_H_
#include "version_agent_globals.h"
#endif
const RWCString
 Version_Agent_i::MSG_VERSION_NOT_FOUND_
 = "Version Info. not found for ";
const CORBA::ULong Version_Agent_i::MAXSERVERS_
 = 12;
Version_Agent_i:: Version_Agent_i():
theVersionInfoPtr_(0)
{ theVersionInfoPtr_
 = new versionInfoType(MAXSERVERS_);
 theVersionInfoPtr_->length(MAXSERVERS_);
} // End constructor
Version_Agent_i:: ~Version_Agent_i()
{ // Do nothing
} // End destructor
/**

FUNCTION NAME: createVersions
PURPOSE: helper function that gets the version info
INPUT:
OUTPUT:

*****/
void Version_Agent_i::createVersions ()
{ char *iorString;
 int bBindOk = 0;

Guidance

269

 int versionCnt = 0;
 versionInfoType* rl = theVersionInfoPtr_;
 CORBA::ULong MAXSERVERS
Version_Agent_i::MAXSERVERS_;
 // server variables for all the objects desired
 // for collecting version information
 // most declarations removed for brevity
 EventServiceFactory_var es_var;
 // Ada configuration service
 Configuration_var cfg_var;
 // === load the versions of the individual
components
 // Code for other services removed for brevity
 // This is an ADA service using the IOR string
 { //****************** config service

 logMsg
 ("get config service version",
 Log_Api::DEBUG_1_MSG
);
 RWCString errMsg
 (
Version_Agent_i::MSG_VERSION_NOT_FOUND_.data()
);
 errMsg.append ("Configuration Service");
 // here we get the IOR from the ADA orb using
 // the helper methods
 iorString = getIorFile("Configuration");
 //template class to hide binding issues to the
ADA ORB
 If (iorString)
 { Ada_Binder < Configuration,
 Configuration_var > bo (iorString);
 bBindOk = bo.bindToAda(&cfg_var) ;
 // get the version info and load it
 If (bBindOk
 && !(CORBA::is_nil(cfg_var))
)
 { try
 { char* str = cfg_var->version();
 if (str)
 { (*theVersionInfoPtr_)[versionCnt]
 = CORBA::string_dup(str);
 delete str;
 } // End if
 else
 { (*theVersionInfoPtr_)[versionCnt]
 = CORBA::string_dup(errMsg.data());
 } // End else
 } // End try
 catch(...)
 { (*theVersionInfoPtr_)[versionCnt]
 = CORBA::string_dup(errMsg.data());
 } // End catch
 cfg_var->_closeChannel();
 } // End if
 else

NESI Part 5: Net-Centric Developer's Guide

270

 { (*theVersionInfoPtr_)[versionCnt]
 = CORBA::string_dup(errMsg.data());
 } // End else
 if(iorString)
 { free (iorString);
 iorString = NULL;
 } // End if
 } //endif iorstring
 else
 { (*theVersionInfoPtr_)[versionCnt]
 = CORBA::string_dup(errMsg.data());
 } // End else
 //leaving scope releases the corba object
 } //end cfg_svf
 bBindOk = 0;
 versionCnt++;
 assert(versionCnt <= MAXSERVERS);
} // End createVersions
/**

FUNCTION NAME: start
PURPOSE: handle startup specific stuff
INPUT:
OUTPUT:

*****/
void Version_Agent_i:: start
 (CORBA::Environment &IT_env
) throw (CORBA::SystemException)
{ //get all the version info
 createVersions();
} // End start
/**

FUNCTION NAME: stop
PURPOSE: handle stop specific stuff
INPUT:
OUTPUT:

*****/
void Version_Agent_i:: stop
 (CORBA::Environment &IT_env
) throw (CORBA::SystemException)
{ // Release info
 // Let CORBA time out the service
 logMsg ("stop received");
 VersionAgentGlobals::myboa->setNoHangup (0);
 VersionAgentGlobals::myboa->deactivate_impl
 ("Version_Agent");
} //end version impl

Guidance

271

G1205
Statement Use non-source code persistence to store all user-modifiable CORBA

service configuration parameters.

Rationale For user-modifiable configuration settings that are host-specific and that
are not intended to be accessible by distributed processes at runtime, the
appropriate mechanism for implementation involves local persistent
storage. The appropriate form of local storage depends on the local host
architecture and may be file- or host-DBMS oriented. It is important that
such parameters are not stored in source code that requires build processes
for modification.

It should be noted that for SOA services, configuration parameters relating
to invoked services should not be service-host-specific at the invoking
client application.

Derived From [G1119]

Justifies

Referenced By CORBA

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Are there any user-modifiable configuration
parameters hard coded in the non-auto-generated
files?

 Procedure Inspect the code for constant strings or constants that
contain configuration parameters.

 Examples None

NESI Part 5: Net-Centric Developer's Guide

272

G1208
Statement Add new functionality rather than redefining existing interfaces in a manner

that brings incompatibility.

Rationale By not replacing old methods of objects, library functionality consumers
can continue to operate and not be forced to upgrade.

Derived From [G1004]

Justifies

Referenced By

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Are methods that are being replaced marked with
deprecated tags?

 Procedure Check revision history to make sure that methods are
deprecated and not removed unless they have
expired. "Expired" means that they have passed the
expected shelf life, as defined by the project
standards or other standards documentation.

 Examples None

2. Test Do new methods being added contain information on
methods they are replacing?

 Procedure Check to make sure newly added methods contain
information and rationale on the methods they are
replacing.

 Examples None

Guidance

273

G1209
Statement For Java, use JDK logging facilities.

Rationale Java has a built-in logging framework that is portable across platforms,
projects, and installations.

Derived From [G1010]

Justifies

Referenced By

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Does the application use anything other than the
specified logging frameworks?

 Procedure Check for use of logging frameworks other than the
JDK.

 Examples None

NESI Part 5: Net-Centric Developer's Guide

274

G1210
Statement For .NET, use Debug and Trace from the System.Diagnostics

namespace.

Rationale .NET has a built-in logging framework that is portable across .NET
projects and installations.

Derived From [G1010]

Justifies

Referenced By

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Does the application use anything other than the
specified logging frameworks?

 Procedure Check for use of logging frameworks other than
System.Diagnostics.

 Examples None

Guidance

275

G1211
Statement For Java, use JDBC.

Rationale JDBC is Java's standard API for accessing databases.

Derived From [G1014]

Justifies

Referenced By

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Does the application use an API other than JDBC to
access the database?

 Procedure Check for vendor-specific APIs such as Oracle’s
OCI.

 Examples None

2. Test Does the application use a vendor specific extension
that is not ANSI-compliant SQL?

 Procedure Check for non-ANSI-compliant SQL.

 Examples None

NESI Part 5: Net-Centric Developer's Guide

276

G1212
Statement For C/C++ and .NET use ODBC.

Rationale ODBC is C/C++ Window's standard API for accessing databases.

Derived From [G1014]

Justifies

Referenced By

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Does the application use an API other than ODBC to
access the database?

 Procedure Check for vendor-specific API.

 Examples None

2. Test Does the application use vendor-specific extension
that is not ANSI-compliant SQL?

 Procedure Check for non-ANSI-compliant SQL..

 Examples None

Guidance

277

G1213
Statement Provide an architecture design document.

Rationale An architectural design document provides the evaluators with a roadmap
of the application. This helps the evaluator verify that the application
follows guidance such as using the Model View Controller model.

Derived From [G1020]

Justifies

Referenced By

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Do the project deliverables for evaluation include a
document that contains the architectural design of
the application?

 Procedure See if an architectural design document exists.

 Examples None

NESI Part 5: Net-Centric Developer's Guide

278

G1214
Statement Provide a document with a plan for deprecating obsolete interfaces.

Rationale This information allows users to phase out deprecated interfaces. For
instance, Sun plans to maintain backward compatibility for the JDK for
seven years. This means developers can count on deprecated methods not
being removed for seven years.

Derived From [G1020]

Justifies

Referenced By

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Do the project deliverables for evaluation include a
document that contains a plan for deprecating
obsolete interfaces?

 Procedure See if a document with a plan for deprecating
obsolete interfaces exists.

 Examples None.

Guidance

279

G1215
Statement Provide a coding standards document.

Rationale The standards ensure a consistent code base. A coding standards document
defines rules to keep code readable and maintainable.

Derived From [G1020]

Justifies

Referenced By

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Do the project deliverables for evaluation include a
coding standards document?

 Procedure See if a coding standards document exists.

 Examples None

NESI Part 5: Net-Centric Developer's Guide

280

G1216
Statement Provide a software release plan document.

Rationale The release plan document ensures that there is a formal process for
releasing the software. It includes a description of how to acquire the
software from SCM and how to build, label, and release it.

Derived From [G1020]

Justifies

Referenced By

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Do the project deliverables for evaluation contain a
release plan document?

 Procedure See if a software release plan exists.

 Examples None

Guidance

281

G1217
Statement Components should be externally configurable.

Rationale To be portable and to accommodate reuse, components must be
configurable using external descriptors usually defined in XML. Examples
of things that might need to be configured include:

• A data source for the component to obtain a JDBC connection

• The location of a service that the component must communicate with

• The location of implementation classes that the component uses

Derived From

Justifies

Referenced By Implement a component-based architecture, [G1002]

Acquisition
Phase

Development

Evaluation
Criteria

1.Test Are deployment descriptors used?

 Procedure Check for the existence of deployment descriptors in the
appropriate directories. Usually the file is named web.xml.

 Examples None

NESI Part 5: Net-Centric Developer's Guide

282

G1218
Statement Support operation in an automated mode.

Rationale During testing, human interaction can be a cause of error and unrepeatable
results. Operating in automated mode can eliminate these errors.

Derived From [G1190]

Justifies [G1002]

Referenced By Automate the build process

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Does the tool have a build all target?

 Procedure Check the build scripts or descriptors of the build
tool for the ability to build the entire project, system,
or application.

 Examples None

Guidance

283

G1219
Statement Check out files from configuration control.

Rationale To make sure all the parts of the build are under configuration control,
compare all files with the configuration baseline, and download the
appropriate files.

Derived From [G1190]

Justifies [G1002]

Referenced By Automate the build process

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Does the tool have a checkout target?

 Procedure Check the build scripts or descriptors of the build
tool for the ability to check out the entire project,
system, or application.

 Examples None

NESI Part 5: Net-Centric Developer's Guide

284

G1220
Statement Compile source code and dependencies that have been modified.

Rationale To limit the changes made between builds, only compile code that has
been modified. If there are no intermediate files, then compile all files.

Derived From [G1190]

Justifies [G1002]

Referenced By Automate the build process

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Does the tool have a compile target?

 Procedure Check the build scripts or descriptors of the build
tool for the ability to compile the entire project,
system, or application.

 Examples None

2. Test Do all the intermediate files (e.g., .obj or .class)
have the same date and time stamps?

 Procedure Scan the files for date and time stamps.

 Examples None

Guidance

285

G1221
Statement Create libraries or archives after all required compilations are completed.

Rationale Libraries should be able to be recreated independently of any executables
and should always verify that any intermediate files are not stale.

Derived From [G1190]

Justifies [G1002]

Referenced By Automate the build process

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Does the tool have a generate library target?

 Procedure Check the build scripts or descriptors of the build
tool for the ability to generate the composing
libraries or archives.

 Examples None

NESI Part 5: Net-Centric Developer's Guide

286

G1222
Statement Create executables

Rationale An executable is dependent on many files, including source files,
intermediate files, and libraries or archives. The building of the executable
must support a control process that includes configuration management,
compiling, and testing.

Derived From [G1190]

Justifies

Referenced By Automate the build process

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Does the tool have an executable target?

 Procedure Check the build scripts or build tool descriptors for
the ability to build the executables for the entire
project, system, or application.

 Examples None

Guidance

287

G1223
Statement Capable of running unit tests.

Rationale All code should be able to be tested independently of creating intermediate
files, libraries, or executables.

Tests should be unit tests as well as system-level tests.

Derived From [G1190]

Justifies

Referenced By Automate the build process

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Does the tool have a test target?

 Procedure Check the build scripts or descriptors of the build
tool for the ability to test the entire project, system,
or application.

 Examples None

NESI Part 5: Net-Centric Developer's Guide

288

G1224
Statement Clean out intermediate files that can be regenerated.

Rationale For security reasons, all files that comprise the build need to be under
configuration control. Cleaning out all files is essential in ensuring that
only approved code is incorporated into the build.

Derived From [G1190]

Justifies {List of guidance statements that this guidance statement justifies (i.e.,
children) Note: should be hypertext links}

Referenced By Automate the build process

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Does the tool have a clean target?

 Procedure Check the build scripts or descriptors for the build
tool for the ability to remove the entire project,
system, or application files.

 Examples None

Guidance

289

G1225
Statement The build tool should be independent of the Integrated Development

Environment.

Rationale Some build tools are tightly coupled with an Integrated Development
Environment (IDE) that causes vendor lock-in and license issues when the
software is delivered to the government.

Derived From [G1190]

Justifies

Referenced By Automate the build process

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Does the build tool require a license?

 Procedure Check for files with the name makefile.

 Examples None

2. Test Is the build tool one of the recognized standards,
such as ant?

 Procedure Check for files named build.xml.

 Examples None

3. Test Is the build tool one of the recognized standards,
such as make or nmake?

 Procedure Check for files with the name makefile.

 Examples None

NESI Part 5: Net-Centric Developer's Guide

290

G1236
Statement Do not hard-code the endpoint of a web-service vendor.

Rationale An endpoint is the URL or location of the web service on the Internet. A
major benefit of web services is the ability to relocate a web service to
another location, or dynamically discover and use a web service using
registry facilities. Some web service vendors hard- code the URL of the
web service, which causes maintenance and portability problems.

Derived From [G1091]

Justifies

Referenced By Insulation and structure guidance

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Are there any hard-coded web service vendor
endpoints in the client code?

 Procedure Parse the code and look for hard-coded endpoints.
These endpoints look just like a normal HTTP web
address.

 Examples None

Guidance

291

G1237
Statement Do not hard-code the configuration data of a web-service vendor.

Rationale Some vendors generate code that passes web-service vendor-specific
configuration data during initialization or startup. This reduces the
portability of the code and can cause maintenance problems later.

Derived From [G1091]

Justifies

Referenced By Insulation and structure guidance

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Is there any web-service vendor-specific
configuration data in the client code?

 Procedure Parse the code and look for hard-coded configuration
data that might be used to configure the vendor’s
web service.

 Examples None

NESI Part 5: Net-Centric Developer's Guide

292

G1239
Statement Vendor-dependent connections to the enterprise should isolate vendor-

specifics using design patterns (e.g., façade, proxy, or adapter) or property
files.

Rationale Increases maintainability. Guidance [G1071] asserts that vendor-neutral
connection mechanisms should be used. When vendor-specific connection
mechanisms are unavoidable, this guidance will apply.

Derived From [G1071]

Justifies

Referenced By

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Is the connection mechanism vendor-dependent?

 Procedure Examine the source code for vendor-specific imports
or includes.

Make sure that all references to the vendor-specific
connection mechanisms are isolated to a single class
(like a helper) or set of methods that are used as part
of an isolation design pattern such as façade, proxy,
or adapter.

Also, look for hard-coded vendor-specific connection
strings.

 Examples None

Guidance

293

G1245
Statement Isolate the web-service portlet from platform dependencies using the OASIS

WSRP Specification 1.0 protocol.

Rationale The OASIS WRSP 1.0 Specification accounts for the fact that producers
and consumers may be implemented on very different platforms, such as a
J2EE -based web service, a web service implemented on Microsoft's .Net
platform, or a portlet published directly by a portal.

Evaluation
Criteria

1. Test Does the web service implement the WRSP Markup
interface?

 Procedure Look for the definition of the getMarkup,
performBlockingInteraction,
initCookie and releaseSessions methods
as defined in the OASIS WSRP Markup API
Specification.

 Examples public MarkupResponse getMarkup
 (RegistrationContext
registrationContext,
 PortletContext portletContext,
 RuntimeContext runtimeContext,
 UserContext userContext,
 MarkupParams markupParams
) throws java.lang.Exception
public void performBlockingInteraction
 (RegistrationContext
registrationContext,
 PortletContext portletContext,
 RuntimeContext runtimeContext,
 UserContext userContext,
 MarkupParams markupParams,
 InteractionParams
interactionParams
) throws java.lang.Exception
public Extension[] initCookie
 (RegistrationContext
registrationContext
) throws java.lang.Exception
public Extension[] releaseSessions
 (RegistrationContext
registrationContext,
 java.lang.String[] sessionIDs
) throws java.lang.Exception

2. Test Does the web service implement the WRSP Service
Description interface?

 Procedure Look for the occurrence of the getService,
register, and getServiceDescription
methods as defined in the OASIS WSRP Service
Description API Specification.

NESI Part 5: Net-Centric Developer's Guide

294

 Examples public static ServiceDescriptionService
getService
 (java.lang.String baseEndpoint
) throws java.lang.ExceptionThrows:
jpublic ServiceDescription
getServiceDescription
 (RegistrationContext
registrationContext,
 java.lang.String[] desiredLocales
) throws java.lang.Exception

3. Test Does the web service implement the WRSP Portlet
Configuration interface?

 Procedure Look for the occurrence of the getService,
getPortletDescription, clonePortlet,
destroyPortlets,
setPortletProperties,
getPortletProperties and
getPortletPropertyDescription methods
as defined in the OASIS WSRP Portlet
Configuration API Specification.

 Examples public static PortletManagementService
getService
 (java.lang.String baseEndpoint
) throws java.lang.Exception
public PortletDescriptionResponse
getPortletDescription
 (RegistrationContext
registrationContext,
 PortletContext portletContext,
 UserContext userContext,
 java.lang.String[] desiredLocales
) throws java.lang.Exception
public PortletContext clonePortlet
 (RegistrationContext
registrationContext,
 PortletContext portletContext,
 UserContext userContext
) throws java.lang.Exception
public DestroyPortletsResponse
destroyPortlets
 (RegistrationContext
registrationContext,
 java.lang.String[] portletHandles
) throws java.lang.Exception
public PortletContext
setPortletProperties
 (RegistrationContext
registrationContext,
 PortletContext portletContext,
 UserContext userContext,
 PropertyList propertyList
) throws java.lang.Exception
public PropertyList
getPortletProperties

Guidance

295

 (RegistrationContext
registrationContext,
 PortletContext portletContext,
 UserContext userContext,
 java.lang.String[] names
) throws java.lang.Exception
public
PortletPropertyDescriptionResponse
getPortletPropertyDescription
 (RegistrationContext
registrationContext,
 PortletContext portletContext,
 UserContext userContext,
 java.lang.String[] desiredLocales
) throws java.lang.ExceptionThrows

4. Test Does the web service implement the WRSP
Registration interface?

 Procedure Look for the occurrence of the getService,
register, deregister, and
modifyRegistration methods as defined in the
OASIS WSRP Specification.

 Examples public static RegistrationService
getService
 (java.lang.String baseEndpoint
) throws java.lang.Exception
public RegistrationContext register
 (java.lang.String consumerName,
 java.lang.String consumerAgent,
 boolean methodGetSupported,
 java.lang.String[] consumerModes,
 java.lang.String[]
consumerWindowStates,
 java.lang.String[]
consumerUserScopes,
 java.lang.String[]
customUserProfileData,
 Property[] registrationProperties
) throws java.lang.Exception
public ReturnAny deregister
 (java.lang.String
registrationHandle,
 byte[] registrationState
) throws java.lang.Exception
public RegistrationState
modifyRegistration
 (RegistrationContext
registrationContext,
 RegistrationData registrationData
) throws java.lang.Exception

297

Best practices

NESI Part 5: Net-Centric Developer's Guide

298

Best practices details
This section contains a complete set of the numbered best practices that are referenced elsewhere
in this guide.

Best practices

299

BP1038
Statement Use one of these standard fonts in web pages, in this order of preference:

Verdana, Universal, Sans Serif. Do not use Times New Roman.

Rationale Web pages are easier to read with suggested fonts.

Acquisition
Phase

Development

Evaluation
Criteria

None

NESI Part 5: Net-Centric Developer's Guide

300

BP1039
Statement Do not underline any text unless it is a link.

Rationale Underlined text is the default behavior of an HTML link. Many users
consider this the norm and may find a web page difficult to read if other
items are underlined.

Acquisition
Phase

Development

Evaluation
Criteria

None

Best practices

301

BP1040
Statement Use hex codes for all colors (e.g., #FFFF33), never the color name (e.g.,

yellow). For an online hexadecimal color chart, see
http://webmonkey.wired.com/webmonkey/reference/color_codes/.

Rationale Increases compatibility between browsers. Industry standard.

Acquisition
Phase

Development

Evaluation
Criteria

None

NESI Part 5: Net-Centric Developer's Guide

302

BP1041
Statement Do not change the default colors of the links.

Rationale Web pages are easier to read because users have become accustomed to
the default colors.

Acquisition
Phase

Development

Evaluation
Criteria

None

Best practices

303

BP1042
Statement Do not build a web page where the horizontal width is greater than the

screen. Vertical scrolling is fine. Plan for the lowest common denominator
to be super-VGA resolution or 600 x 800.

Rationale This enables you to print pages on most printers and render pages on most
displays.

Acquisition
Phase

Development

Evaluation
Criteria

None

NESI Part 5: Net-Centric Developer's Guide

304

BP1054
Statement Use standard controls that provide input choices for the user. These controls

might include radio buttons, check boxes, list boxes, and drop-downs.

Rationale Reduces user input errors.

Acquisition
Phase

Development

Evaluation
Criteria

None

Best practices

305

BP1075
Statement All application developers should use the Ant build tool to build, package,

and deploy J2EE applications in their development environments.

Rationale There are several good IDEs on the market to support developing J2EE
applications. However, different IDEs tend to auto-generate code that does
not port to other IDEs, creating a problem when sharing code between
groups using different IDEs. To minimize these compatibility issues and
development environment turf wars, common building tools need to be
used.

Referenced By Automate the build process

Acquisition
Phase

Development

Evaluation
Criteria

None

NESI Part 5: Net-Centric Developer's Guide

306

BP1076
Statement When deploying a new application to a WebLogic application server (e.g.,

ear, war, rar), do not edit the WebLogic startup file to add application-
specific information. This file is used for server startup only and should not
contain application-specific logic. The system administrator must approve
and coordinate all updates to this file.

Rationale Server startup should not depend on an individual application.

Acquisition
Phase

Development

Evaluation
Criteria

None

Best practices

307

BP1077
Statement Do not edit the config.xml file manually. The config.xml file is the

persistent store used by the WebLogic server to store runtime configuration
parameters. Instead, use the WebLogic management console to configure
the WebLogic server. Any edits done through the management console will
be written to config.xml.

Rationale Editing the config.xml file manually can introduce unpredictable server
errors and cause loss of important configuration data.

Acquisition
Phase

Development

Evaluation
Criteria

None

NESI Part 5: Net-Centric Developer's Guide

308

BP1097
Statement Use the System.Text.StringBuilder class for repetitive string

modifications such as appending, removing, replacing, or inserting
characters.

Rationale Strings in .NET are immutable. This means that every time a string is
created as a result of a string operation such as concatenation, a new string
is created for each intermediate string in a set of operations. This has a lot
of string management overhead. StringBuilder avoids these problems.

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Are there repetitive string operations that use string
operations instead of StringBuilder operations?

 Procedure Scan all C# code for repetitive string operations such
as appending, removing, replacing, or inserting
characters.

 Examples None

Best practices

309

BP1098
Statement Write all .NET code in C#.

Rationale Because of the high degree of similarities between C# and Java, .NET code
written in C# is easily ported to Java. .NET has removed most of the
advantages of one language (C#, C++, J++, VB) over another.

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Are any .NET languages delivered other than C#?

 Procedure Scan delivered code for registered .NET file
extensions other than C#.

 Examples None

NESI Part 5: Net-Centric Developer's Guide

310

BP1100
Statement Compile all code using the .NET Just-In-Time compiler.

Rationale There are two different ways to generate machine code within the .NET
environment: Just-In-Time (JIT) and Native Image Generator (NGEN).
The NGEN method provides performance advantages by using the native
image cache portion of the global assembly cache, which is specific to the
machine where the .NET common language runtime is installed. It is
machine-dependent and is less portable.

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Is ngen.exe used?

 Procedure Scan all delivered code for the use of ngen.exe or the
ngen command.

 Examples None

Best practices

311

BP1109
Statement Use Windows unattended setup to install Message Queuing software by

remotely using an answer file.

Rationale It should not be necessary to have a “human in the loop” when installing
the Message queuing software. This reduces errors during installation and
helps establish a uniform installation base.

Derived From

Justifies [BP1226], [BP1227], [BP1228], [BP1229], [BP1230]

Referenced By

Acquisition
Phase

Development

Evaluation
Criteria

See sublevel best practices to evaluate this guidance.

NESI Part 5: Net-Centric Developer's Guide

312

BP1111
Statement Mark all MSMQ messages as recoverable.

Rationale MSMQ normally only stores the contents of messages in memory, which
will be lost if a power, hardware, or software failure occurs. By marking
messages as recoverable, messages are also stored to disk so the contents
can be recovered after a failure.

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Are all messages and message queues marked as
recoverable?

 Procedure Scan the code for the creation of messages and
message codes, and make sure each has the
recoverable attribute set to true.

 Examples None

Best practices

313

BP1112
Statement Specify all MSMQ queues as transactional if they support multiple-step

processes.

Rationale Transactions allow multi-step processes to behave correctly when a
rollback occurs.

Acquisition
Phase

Development

Evaluation
Criteria

None

NESI Part 5: Net-Centric Developer's Guide

314

BP1116
Statement If using Java-based messaging (e.g., JMS), register destinations in JNDI so

message clients can use JNDI to look up these destinations.

Rationale JNDI is an industry standard for Java-based applications.

Referenced By Java Naming & Directory Interface (JNDI)

Acquisition
Phase

Development

Evaluation
Criteria

None

Best practices

315

BP1122
Statement When using CORBA strings, follow the best practice guidelines in the child

documents listed below.

Rationale Aids in memory management by reducing memory leaks and memory-
related errors.

Justifies [BP1231], [BP1232], [BP1233], [BP1234], [BP1235]

Acquisition
Phase

Development

Evaluation
Criteria

See sublevel best practices to evaluate this guidance.

NESI Part 5: Net-Centric Developer's Guide

316

BP1139
Statement Adhere to a core set of SQL features. Minimize use of proprietary

extensions to the SQL standard.

Rationale It is almost impossible to use Oracle, SQL Server, or DB-2 without using
proprietary extensions to the SQL standards. In many cases, however,
these extensions are later incorporated into the standard.

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Have the developers adhered to a core set of features
and minimized use of proprietary extensions to the
SQL standard?

 Procedure Examine a representative sample of database scripts
and stored procedures.

 Examples None

Best practices

317

BP1140
Statement Use SQL-2003 features in preference to SQL-92 or SQL-99.

Rationale SQL-2003 includes many XML and OODB extensions and features. Use it
in preference to SQL-99 or SQL-92 entry-level features, to justify the
recommendations against using native XML databases and OODB
databases.

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Have the developers used SQL-2003 features rather
than SQL-92 or SQL-99 features?

 Procedure Examine a representative sample of database scripts
and stored procedures.

 Examples None

NESI Part 5: Net-Centric Developer's Guide

318

BP1143
Statement Use a database modeling tool that supports a two-level model

(Conceptual/Logical and Physical) and ISO-11179 data exchange
standards.

Rationale ISO-11179 is a metadata repository standard. The tools we have been
using operate in a mode where the model is stored locally in an XML file
or in a vendor-specific repository. For many applications, there is no need
to use the repository at all. CM could be affected by checking the model in
and out of a tool such as Source Safe. Entity-Relationship data model is
synonymous with a Conceptual Data Model.

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Is a database modeling tool being used and does it
support the ISO-11179 data exchange standards?

 Procedure Verify that the requirement for a database modeling
tool is included in the system requirements. If ISO-
11179 standard-based metadata repository products
become available, determine whether the product
provides an interface thereto.

 Examples None

Best practices

319

BP1145
Statement Conceptual and logical models should be vendor-neutral whenever

possible.

Rationale The leading database vendors do not have a common set of data types or
object name length limitations, and there are no ANSI standards that
address these issues. To maintain vendor-neutral models, vendor-specific
features will not be accepted.

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Has the data model been designed using vendor-
neutral design criteria?

 Procedure Examine the conceptual/logical data model.

 Examples None

NESI Part 5: Net-Centric Developer's Guide

320

BP1177
Statement To ensure decoupling from the visualization layer, do not develop to the

ATLAS APIs. Develop to either the JMTK COE APIs, or to the OGC open-
standards APIs (GO-1: an OGC abstraction layer added to ATLAS that
allows developers to use OGC GO-1/GEOBJECTSAPI calls and
Geobjects). C2PC bindings allow developers to use either strategy.

Rationale

Acquisition
Phase

Development

Evaluation
Criteria

None

Best practices

321

BP1226
Statement Locate the Answer file for the MSMQ in the MSMQ installation directory

on the computer from where the unattended setup will be initiated.

Rationale This allows the installation process to be consistently repeated.

See (MSMQ Concepts 3.6).

Derived From [BP1109]

Justifies

Referenced By

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Is the answer file in the MSMQ installation
directory?

 Procedure Find out where the MSMQ answer files are located.
If the location is not provided, search for a file that
contains one of the answer file settings listed in this
guidance.

 Examples None

NESI Part 5: Net-Centric Developer's Guide

322

BP1227
Statement Do not allow dependent clients to be installed.

Rationale MSMQ-dependent clients require synchronous access to an MSMQ server
and create performance issues on the server. Consequently, dependent
clients cannot operate if they are disconnected from the rest of the
enterprise networks.

Dependent clients cannot be run under local accounts.

Dependent clients leave all encrypted messages in plain text between the
client and server.

Derived From [BP1109]

Justifies

Referenced By

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Is msmq_LocalStorage = ON in the MSMQ
answer file?

 Procedure Scan the answer file for the setting.

 Examples None

2. Test Is SupportingServer set in the MSMQ answer
file?

 Procedure Scan the answer file for the setting.

 Examples None

Best practices

323

BP1228
Statement Do not use the features found in MSMQ v3.0 HTTP transport.

Rationale This is an extension of the Internet Information Services (IIS) and should
be avoided.

Derived From [BP1109]

Justifies

Referenced By

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Is msmq_HTTPSupport = OFF in the MSMQ
answer file?

 Procedure Scan the answer file for the setting.

 Examples None

NESI Part 5: Net-Centric Developer's Guide

324

BP1229
Statement Do not use the features found in MSMQ v3.0 message queue triggering.

Rationale This is an extension of the Internet Information Services (IIS) and should
be avoided.

Derived From [BP1109]

Justifies

Referenced By

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Is msmq_TriggersService = OFF in the MSMQ
answer file?

 Procedure Scan the answer file for the setting.

 Examples None

Best practices

325

BP1230
Statement Do not use the SupportLocalAccountsOrNT4 feature.

Rationale This entry enables weakened security for Active Directory on a domain
controller, which is then replicated to all other domain controllers in every
domain in your forest.

See (MSMQ Concepts 3.6)

Derived From [BP1109]

Justifies

Referenced By

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Is SupportLocalAccountsOrNT4 = FALSE in the
MSMQ answer file?

 Procedure Scan the answer file for the setting.

 Examples None

NESI Part 5: Net-Centric Developer's Guide

326

BP1231
Statement Use CORBA::String_var in IDL to pass string types in C++.

Rationale To correct memory management and reduce memory leaks and runtime
faults.

Derived From [BP1122]

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Is String_var used in the implementation code that
was not auto generated?

 Procedure Check implementation code that was not
autogenerated for all occurrences of "string" and
verify that they are String_var.

 Examples None

Best practices

327

BP1232
Statement Do not pass or return a zero or null pointer; instead, pass an empty string.

Rationale To correct memory management and reduce memory leaks and runtime
faults.

Derived From [BP1122]

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Are there any returns that contain pointers that are
assigned zero?

 Procedure Check code to make sure that all strings returned
always have a safety check for zero or null pointers,
and assign them to empty strings.

 Examples None

NESI Part 5: Net-Centric Developer's Guide

328

BP1233
Statement Do not assign CORBA::String_var type to INOUT method parameters.

Rationale To correct memory management and reduce memory leaks and runtime
faults.

Derived From [BP1122]

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Are there any IDL implementation classes using
methods that contain CORBA::String_var?

 Procedure Inspect CORBA code to make sure INOUT
parameters are not assigned to
CORBA::String_var values.

 Examples None

Best practices

329

BP1234
Statement Assign string values to OUT, INOUT, or RETURN parameters using

operations to allocate or duplicate values rather than creating and deleting
values.

Rationale Correct memory management and reduce memory leaks and reduce
runtime faults.

Derived From [BP1122]

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Are string_dup, string_alloc and
string_free being used?

 Procedure Search CORBA code for the use of string_dup,
string_alloc and string_free.

 Examples None

2. Test Are new and delete operators being used for strings
being assigned to OUT, INOUT or RETURN
parameters?

 Procedure Inspect CORBA code to make sure OUT, INOUT,
and RETURN parameters are not using strings
managed with the new and delete operators.

 Examples None

NESI Part 5: Net-Centric Developer's Guide

330

BP1235
Statement Assign string values to returned-as-attribute values using operations to

allocate or duplicate values rather than creating and deleting values.

Rationale To correct memory management and reduce memory leaks and runtime
faults.

Derived From [BP1122]

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Are string_dup, string_alloc and
string_free being used?

 Procedure Search CORBA code for the use of string_dup,
string_alloc and string_free.

 Examples None

2. Test Are new and delete operators being used for strings
being returned-as-attribute?

 Procedure Inspect CORBA code to make sure returned-as-
attribute string values are not using strings managed
with the new and delete operators.

 Examples None

Best practices

331

BP1240
Statement Present complete and coherent sets of concepts to the user.

Rationale The interface should not require the consumer to continually implement
multiple interfaces when a single interface can accomplish the same thing.

NESI Part 5: Net-Centric Developer's Guide

332

BP1241
Statement Design interfaces to be statically typed.

Rationale Designing a statically typed interface allows consumers to use early
binding rather than late binding. This minimizes the risk for runtime errors
due to late binding.

Best practices

333

BP1242
Statement Minimize the interface’s dependencies on other interfaces.

Rationale Minimizing the dependency of an interface on other interfaces simplifies
the use of the interface by consumers.

NESI Part 5: Net-Centric Developer's Guide

334

BP1243
Statement Express interfaces in terms of application-level types.

Rationale Use application-level types to maintain the meaning of values used with
the interface. This enables data validation and other runtime safety checks
against the data.

Best practices

335

BP1244
Statement Use assertions only to aid development and integration.

Rationale Assertions allow you to evaluate Boolean expressions to determine if the
code is executing within the proper operating constraints. For example, if a
calculated temperature is supposed to be between -273 degrees and +1,000
degrees, you can test the results of the calculation with an assertion. Once
the code is tested and/or integrated, this calculation no longer needs to
occur after each calculation.

Assertion execution is integrated into the compiler. Consequently, you can
add it into the executable or eliminate it by setting compiler options (i.e.
switches). Assertions are therefore ideal for adding code that is useful
during development or integration, but wasteful in delivered code.

Derived From

Justifies

Referenced By Public interface design

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Do public methods that implement interfaces have
assertions?

 Procedure Check all implementations of public interfaces to
ensure that all public methods that are part of the
interface do not use the assert command.

 Examples The following example shows a correct
implementation of a public method in a public
interface.
public interface NameInterface is
public String getName
 (int nameID)
 Throws IllegalArgumentException
 {
 /* precondition check */
 if (nameID <= 0
 || nameID > MAX_NAMES
)
 { throw new
IllegalArgumentException
 ("Illegal id number: " +
nameID);
 }
 . . .// Do the computation
 return theResult;
 } // End getName

} // NameInterface
The following example shows an incorrect

NESI Part 5: Net-Centric Developer's Guide

336

implementation of a public method in a public
interface. Do not use the implementation exemplified
by the red code.
public interface NameInterface is
public String getName
 (int nameID)
 {
 /* precondition check */
 assert nameID <= 0
 || nameID > MAX_NAMES
 : "Illegal id number: " +
nameID);
... . . .// Do the computation
 return theResult;
 } // End getName

} // NameInterface

Best practices

337

BP1246
Statement Java-based portlets should be based on JSR 168.

Rationale JSR 168 enables interoperability between Java portlets and portals. This
specification defines a set of APIs for portal computing that addresses the
areas of aggregation, personalization, presentation, and security.
http://www.jcp.org/en/jsr/detail?id=168

NESI Part 5: Net-Centric Developer's Guide

338

BP1247
Statement Encapsulate Java-based portlets in a WAR file.

Rationale Storing JSR-168-compliant code in the portal container improves
interoperability and code reuse.

Best practices

339

BP1248
Statement Do not assign the same name to multiple database objects such as databases,

schema, users, tables, views, or indices.

Rationale The names of schemas, users, tables, and columns need to be unique and
descriptive. Unfortunately, it is possible (but undesirable) to give the same
name to multiple objects: for example, assigning the name “employee” to a
database, table, and column. Many naming conventions get around this by
appending a suffix that indicates the kind of object: for example,
Employee_Db, Employee_Tbl, Employee_Id, Employee_Indx.

Avoid generic column names such as “ID.” Systems often have many
kinds of IDs, and even if the system really only does have a single ID, it
will be more difficult to merge with other databases if they have also used
the column name “ID.”

Some DBMSs support mixed-case names of unlimited length, while others
are case-insensitive. For portability, assume that names are case-insensitive
and limited to 30 characters. Do not use reserved words from the SQL-
92, SQL:1999, or SQL:2003 standards.

Derived From

Justifies BP1249, BP1250, BP1251, BP1252, BP1253, BP1254

Referenced By RDBMS internals

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Is there a naming convention?

 Procedure Check for the existence of a document that governs
naming conventions, or look for patterns in the
database metadata.

 Examples Use database commands to look at the database
metadata:
select username from all_users

select table_name from user_tables

select index_name from user_indexes

NESI Part 5: Net-Centric Developer's Guide

340

BP1249
Statement Do not use generic names for database objects such as databases, schema,

users, tables, views, or indices.

Rationale Assigning generic names to user-defined objects within a database can lead
to confusion and unexpected results. For example, naming a database
“instance” within the RDBMS database is confusing to the humans who
have to read commands that reference the database. In addition, the
RDBMS software may parse it incorrectly.

Note: Although some RDBMS interpreters allow you to use a generic or
reserved word to name objects if the name is surrounded with quotes, you
should not do this either.

Derived From BP1248

Justifies

Referenced By RDBMS internals

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Are any generic names used for user-defined objects?

 ProcedureExamine the RDBMS metadata for generic names such as
database, table, entity, column, attribute, select, view, etc.

 Examples select table_name from user_tables where
table_name in (‘database’,’entity’,…)

select column_name from user_tab_columns
where column_name in (‘database’,’entity’,…)

Best practices

341

BP1250
Statement Use case-insensitive names for database objects such as databases, schema,

users, tables, views, and indices.

Rationale The SQL standard does not require names to be case-sensitive.
Consequently, some DBMSs are not case-sensitive. Using case-sensitive
names therefore makes portability more difficult.

Derived From BP1248

Justifies

Referenced By RDBMS internals

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Are the names of database objects case-sensitive?

 Procedure Examine the database metadata for “run-on” names.
If the database supports case-sensitive names, check
to see if it is using camel-back capitalization.

 Examples EMPLOYEEBENEFITSTBL

EmployeeBenefitsTbl

NESI Part 5: Net-Centric Developer's Guide

342

BP1251
Statement Separate words with underscores.

Rationale The SQL standard does not require names to be case-sensitive.
Consequently, some DBMSs are not case-sensitive. Using case-sensitive
names therefore makes portability more difficult. To avoid these problems,
use underscores to separate words (employee_benefits_tbl) rather than
camel-back capitalization (EmployeeBenefitsTbl).

Derived From BP1248

Justifies

Referenced By RDBMS internals

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Are underscores used between the words in the
names of database objects?

 Procedure Examine the database metadata and look for names
that do not have underscores separating words.

 Examples EMPLOYEEBENEFITSTBL versus
EMPLOYEE_BENEFITS_TBL

EmployeeBenefitsTbl versus
Employee_Benefits_Tbl

Best practices

343

BP1252
Statement Do not use names with more than 30 characters.

Rationale Not all DBMSs support unlimited name lengths. For example, Oracle limits
object names to 30 characters. Therefore, using names longer than 30
characters can reduce portability by limiting the DBMSs that the system can
be deployed on.

Derived From BP1248

Justifies

Referenced By RDBMS internals

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Are any of the database object names more than 30
characters in length?

 Procedure Examine the database metadata and look for names
that are longer than 30 characters.

 Examples
....:....1....:....2....:....3....:....4

W2_EMPLOYEE_BENEFITS_FOR_FAMILIES_TBL

NESI Part 5: Net-Centric Developer's Guide

344

BP1253
Statement Do not use the SQL:1999 or SQL:2003 reserved words as names for database

objects such as databases, schema, users, tables, views, or indices.

Rationale Using reserved words as the names of database objects can cause
ambiguities and errors. It limits your ability to upgrade or port the code to
other systems.

Derived From BP1248

Justifies

Referenced By RDBMS internals

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Are any of the SQL:1999 or SQL:2003 reserved
words used to name objects in the database?

 Procedure Examine the database metadata for names that are in
the list of SQL:1999 or SQL:2003 reserved words

 Examples Look for any of these words:
ABS ABSOLUTE ACCESS ACQUIRE ACTION ADA
ADD ADMIN AFTER AGGREGATE ALIAS ALL
ALLOCATE ALLOW ALTER AND ANY ARE ARRAY
AS ASC ASENSITIVE ASSERTION ASUTIME
ASYMMETRIC AT ATOMIC AUDIT
AUTHORIZATION AUX AUXILIARY AVG

BACKUP BEFORE BEGIN BETWEEN BIGINT
BINARY BIT BIT_LENGTH BLOB BOOLEAN BOTH
BREADTH BREAK BROWSE BUFFERPOOL BULK BY

CALL CALLED CAPTURE CARDINALITY CASCADE
CASCADED CASE CAST CATALOG CCSID CEIL
CEILING CHAR CHAR_LENGTH CHARACTER
CHARACTER_LENGTH CHECK CHECKPOINT CLASS
CLOB CLOSE CLUSTER CLUSTERED COALESCE
COLLATE COLLATION COLLECT COLLECTION
COLLID COLUMN COMMENT COMMIT COMPLETION
COMPRESS COMPUTE CONCAT CONDITION
CONNECT CONNECTION CONSTRAINT
CONSTRAINTS CONSTRUCTOR CONTAINS
CONTAINSTABLE CONTINUE CONVERT CORR
CORRESPONDING COUNT COUNT_BIG COVAR_POP
COVAR_SAMP CREATE CROSS CUBE CUME_DIST
CURRENT CURRENT_COLLATION CURRENT_DATE
CURRENT_DEFAULT_TRANSFORM_GROUP
CURRENT_LC_PATH CURRENT_PATH
CURRENT_ROLE CURRENT_SERVER
CURRENT_TIME CURRENT_TIMESTAMP
CURRENT_TIMEZONE
CURRENT_TRANSFORM_GROUP_FOR_TYPE

Best practices

345

CURRENT_USER CURSOR CYCLE

DATA DATABASE DATALINK DATE DAY DAYS
DB2GENERAL DB2SQL DBA DBCC DBINFO
DBSPACE DEALLOCATE DEC DECIMAL DECLARE
DEFAULT DEFERRABLE DEFERRED DELETE
DENSE_RANK DENY DEPTH DEREF DESC
DESCRIBE DESCRIPTOR DESTROY DESTRUCTOR
DETERMINISTIC DIAGNOSTICS DICTIONARY
DISALLOW DISCONNECT DISK DISTINCT
DISTRIBUTED DLNEWCOPY DLPREVIOUSCOPY
DLURLCOMPLETE DLURLCOMPLETEONLY
DLURLCOMPLETEWRITE DLURLPATH
DLURLPATHONLY DLURLPATHWRITE
DLURLSCHEME DLURLSERVER DLVALUE DO
DOMAIN DOUBLE DROP DSSIZE DUMMY DUMP
DYNAMIC

EACH EDITPROC ELEMENT ELSE ELSEIF END
END-EXEC EQUALS ERASE ERRLVL ESCAPE
EVERY EXCEPT EXCEPTION EXCLUSIVE EXEC
EXECUTE EXISTS EXIT EXP EXPLAIN
EXTERNAL EXTRACT

FALSE FENCED FETCH FIELDPROC FILE
FILLFACTOR FILTER FINAL FIRST FLOAT
FLOOR FOR FOREIGN FORTRAN FOUND FREE
FREETEXT FREETEXTTABLE FROM FULL
FUNCTION FUSION

GENERAL GENERATED GET GLOBAL GO GOTO
GRANT GRAPHIC GROUP GROUPING

HANDLER HAVING HOLD HOLDLOCK HOST HOUR
HOURS

IDENTIFIED IDENTITY IDENTITY_INSERT
IDENTITYCOL IF IGNORE IMMEDIATE IMPORT
IN INCLUDE INCREMENT INDEX INDICATOR
INITIAL INITIALIZE INITIALLY INNER
INOUT INPUT INSENSITIVE INSERT INT
INTEGER INTEGRITY INTERSECT
INTERSECTION INTERVAL INTO IS ISOBID
ISOLATION ITERATE

JAR JAVA JOIN

KEY KILL

LABEL LANGUAGE LARGE LAST LATERAL
LC_CTYPE LEADING LEAVE LEFT LESS LEVEL
LIKE LIMIT LINENO LINKTYPE LN LOAD
LOCAL LOCALE LOCALTIME LOCALTIMESTAMP
LOCATOR LOCATORS LOCK LOCKSIZE LONG
LOOP LOWER

NESI Part 5: Net-Centric Developer's Guide

346

MAP MATCH MAX MAXEXTENTS MEMBER MERGE
METHOD MICROSECOND MICROSECONDS MIN
MINUS MINUTE MINUTES MOD MODE MODIFIES
MODIFY MODULE MONTH MONTHS MULTISET

NAME NAMED NAMES NATIONAL NATURAL NCHAR
NCLOB NEW NEXT NHEADER NO NOAUDIT
NOCHECK NOCOMPRESS NODENAME NODENUMBER
NONCLUSTERED NONE NORMALIZE NOT NOWAIT
NULL NULLIF NULLS NUMBER NUMERIC
NUMPARTS

OBID OBJECT OCTET_LENGTH OF OFF OFFLINE
OFFSETS OLD ON ONLINE ONLY OPEN
OPENDATASOURCE OPENQUERY OPENROWSET
OPENXML OPERATION OPTIMIZATION OPTIMIZE
OPTION OR ORDER ORDINARILITY OUT OUTER
OUTPUT OVER OVERLAPS OVERLAY

PACKAGE PAD PAGE PAGES PARAMETER
PARAMETERS PART PARTIAL PARTITION
PASCAL PATH PCTFREE PCTINDEX PERCENT
PERCENT_RANK PERCENTILE_CONT
PERCENTILE_DISC PIECESIZE PLAN POSITION
POSTFIX POWER PRECISION PREFIX PREORDER
PREPARE PRESERVE PRIMARY PRINT PRIOR
PRIQTY PRIVATE PRIVILEGES PROC
PROCEDURE PROGRAM PSID PUBLIC

QUERYNO

RAISERROR RANGE RANK RAW READ READS
READTEXT REAL RECONFIGURE RECOVERY
RECURSIVE REF REFERENCES REFERENCING
REGR_AVGX REGR_AVGY REGR_COUNT
REGR_INTERCEPT REGR_R2 REGR_SLOPE
REGR_SXX REGR_SXY REGR_SYY RELATIVE
RELEASE RENAME REPEAT REPLICATION RESET
RESIGNAL RESOURCE RESTORE RESTRICT
RESULT RETURN RETURNS REVOKE RIGHT ROLE
ROLLBACK ROLLUP ROUTINE ROW ROW_NUMBER
ROWCOUNT ROWGUIDCOL ROWID ROWNUM ROWS
RRN RULE RUN

SAVE SAVEPOINT SCHEDULE SCHEMA SCOPE
SCRATCHPAD SCROLL SEARCH SECOND SECONDS
SECQTY SECTION SECURITY SELECT
SENSITIVE SEQUENCE SESSION SESSION_USER
SET SETS SETUSER SHARE SHUTDOWN SIGNAL
SIMILAR SIMPLE SIZE SMALLINT SOME
SOURCE SPACE SPECIFIC SPECIFICTYPE SQL
SQLCA SQLCODE SQLERROR SQLEXCEPTION
SQLSTATE SQLWARNING SQRT STANDARD START
STATE STATEMENT STATIC STATISTICS STAY
STDDEV_POP STDDEV_SAMP STOGROUP STORES
STORPOOL STRUCTURE STYLESUBPAGES

Best practices

347

SUBSTRING SUCCESSFUL SUM SYMMETRIC
SYNONYM SYSDATE SYSTEM SYSTEM_USER

TABLE TABLESPACE TEMPORARY TERMINATE
TEXTSIZE THAN THEN TIME TIMESTAMP
TIMEZONE_HOUR TIMEZONE_MINUTE TO TOP
TRAILING TRAN TRANSACTION TRANSLATE
TRANSLATION TREAT TRIGGER TRIM TRUE
TRUNCATE TSEQUAL TYPE

UID UNDER UNDO UNION UNIQUE UNKNOWN
UNNEST UNTIL UPDATE UPDATETEXT UPPER
USAGE USE USER USING

VALIDATE VALIDPROC VALUE VALUES VAR_POP
VAR_SAMP VARCHAR VARCHAR2 VARIABLE
VARIANT VARYING VCAT VIEW VOLUMES

WAITFOR WHEN WHENEVER WHERE WHILE
WIDTH_BUCKET WINDOW WITH WITHIN WITHOUT
WLM WORK WRITE WRITETEXT

YEAR YEARS

ZONE

NESI Part 5: Net-Centric Developer's Guide

348

BP1254
Statement For command-and-control systems, use the names defined in the C2IEDM

for data exposed to the outside communities.

Rationale The Command and Control (C2) COI has developed a data model to
facilitate the exchange of data within the community and by consumers of
their data outside the community. Therefore, data that is to be exposed
from the database to the COI community or its data consumers should
defer to the data model whenever possible. The data model defines the data
units as well as the names and structure of the data.

Derived From BP1248

Justifies

Referenced By RDBMS internals

Acquisition
Phase

Development

Evaluation
Criteria

1. Test If this is a C2 system, does it use C2IEDM data
elements for the data that is exposed to the outside
world?

 Procedure Review all the data that is exposed to the outside
world and confirm that it conforms to the C2IEDM
specifications.

 Examples None.

Best practices

349

BP1255
Statement Use surrogate keys.

Rationale A surrogate key, also referred to as a system-generated key, database-
sequence number, or arbitrary unique identifier, is a unique, arbitrary
primary key. It is usually generated by the RDBMS, but can also be
generated by a database access layer such as the middle tier. It is arbitrary
because it is not derived from any data that exists within the table or the
database. Some other options for surrogate keys are:

Universally Unique Identifiers (UUIDs)
(http://en.wikipedia.org/wiki/Universally_Unique_Identifier)

Globally Unique Identifiers (GUIDs)
(http://en.wikipedia.org/wiki/Globally_Unique_Identifier)

Derived From

Justifies BP1256, BP1257

Referenced By RDBMS internals

Acquisition
Phase

Development

Evaluation
Criteria

See sublevel guidance for evaluation criteria.

NESI Part 5: Net-Centric Developer's Guide

350

BP1256
Statement Use surrogate keys as the primary key.

Rationale Instead of using the natural keys to uniquely identify each record, use a
surrogate key. This allows the natural key information to be modified
independently of the primary key and any foreign-key references to the key.

Derived
From

Justifies

Referenced
By

RDBMS internals

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Are surrogate keys used instead of natural keys?

 Procedure Look at the database metadata and determine if it uses
surrogate or natural keys.

 Examples The following example shows natural keys. The primary keys
are made up completely or in part from naturally occurring
data in the tables.

The following example shows a surrogate key being used
instead of a natural key. Maintaining data is less complex than
it is with natural keys and consequently less error-prone.

Best practices

351

NESI Part 5: Net-Centric Developer's Guide

352

BP1257
Statement Place a unique key constraint on the natural key fields or secondary key.

Rationale Surrogate keys make it easier to maintain data. However, a column or set
of columns should still uniquely identify the row in the table. This column
or set of columns is the “natural key” or “secondary key.” This natural key
should still be protected by the uniqueness constraint normally associated
with a primary key.

Derived From

Justifies

Referenced By RDBMS internals

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Is there a unique key index for all tables that
includes a column or set of columns not including the
primary key?

 Procedure Look at the database metadata to ensure that each
table has a unique key, and that the columns in the
unique key are not also part of the primary key.

Best practices

353

BP1258
Statement All data transferred via XML should explicitly define the encoding style.

Rationale By default, XML is encoded using Unicode. Consequently, data
transferred via XML should explicitly specify the encoding style.
Assuming the default can cause interoperability problems between
implementations. For example, the ASCII coding style is: {insert}

Derived From

Justifies

Referenced By RDBMS internals

Acquisition
Phase

Development

Evaluation
Criteria

1. Test {OPTIONAL: Place a question here that can be used
to evaluate the best practice statement. One question
per test. If there are multiple questions required to
evaluate a guidance statement, indicate if the tests
are to be “And’d” or “Or’d”}

 Procedure {OPTIONAL: Place the procedure to evaluate the
test question here. The procedure can be multiple
steps}

 Examples Look for the following XML tag as the first line
returned from queries that return XML from the
database.
<?xml version="1.0" encoding="UTF-8"?>

NESI Part 5: Net-Centric Developer's Guide

354

BP1259
Statement Use indexes.

Rationale An index in an RDBMS is a summary of information organized to
minimize the search time. Indexes summarize the information in a table.
So, an employee table might have an index of last names, or last name and
first name.

Having additional indexes on tables involves a tradeoff between query
performance and insert/update/delete performance, which requires
underlying index maintenance.

Derived From

Justifies BP1260, BP1261, BP1262

Referenced By RDBMS internals

Acquisition
Phase

Development

Evaluation
Criteria

See sublevel guidance for evaluation criteria.

Best practices

355

BP1260
Statement All tables should have a primary key, which is generally enforced via an

underlying index.

Rationale By definition, a primary key uniquely defines each row within a table. To
optimize the use of the table and to find records by the primary key, there
should be an index that enforces the uniqueness of the key.

Derived From BP1259

Justifies

Referenced By RDBMS internals

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Is there a primary key defined for each table listed in
the database?

 Procedure Examine the database metadata to ensure there is a
primary key for each table in the database.

NESI Part 5: Net-Centric Developer's Guide

356

BP1261
Statement Monitor and tune indexes according to the response time during normal

operations in the production environment.

Rationale Index efficiency depends on the data being indexed. Common variables
include:

• A sparsely populated table versus a densely populated table

• Data added in an presorted order versus a random order

Consequently, as the data changes, the efficiency of the index changes.

Derived From BP1259

Justifies

Referenced By RDBMS internals

Acquisition
Phase

Development

Evaluation
Criteria

There are no tests to determine if the database has been monitored and
tuned accordingly.

Best practices

357

BP1262
Statement In the case of Oracle, define indexes against the FK columns to avoid

contention and locking issues.

Rationale

Derived From BP1259

Justifies

Referenced By RDBMS internals

Acquisition
Phase

Development

Evaluation
Criteria

None

NESI Part 5: Net-Centric Developer's Guide

358

BP1263
Statement Gather storage requirements in the planning phase, and then allocate twice

the estimated storage space.

Rationale Storage space on the disk always poses a problem for databases, so it is
necessary to plan storage space carefully.

Derived From

Justifies

Referenced By RDBMS internals

Acquisition
Phase

Development

Evaluation
Criteria

None

Best practices

359

BP1264
Statement For high availability, use hardware solutions when geographic proximity

permits.

Rationale There are many ways to achieve high availability. Some are based on
hardware and others on software. As a general rule, hardware solutions use
simple redundancy and are consequently less complex and fragile. If
geographic proximity is not an issue, the hardware solution is preferable.

Derived From

Justifies

Referenced By RDBMS internals

Acquisition
Phase

Development

Evaluation
Criteria

There are no tests for this best practice.

NESI Part 5: Net-Centric Developer's Guide

360

BP1265
Statement XML validation is the responsibility of the XML document generator.

Rationale All XML passed between two systems or services must be valid. The XML
document generator is responsible for ensuring that the document is valid
and well-formed. If there are problems, the document generator is the only
user that can effectively change the document.

Derived From

Justifies

Referenced By Parsing XML strategies

Acquisition
Phase

Development

Evaluation
Criteria

1. Test Are all the XML documents exported from the system
or service valid and well-formed?

 Procedure Capture all the documents and validate them, using a
product similar to XMLSpy.

 Examples None

361

Appendices
This section contains information on the following topics:

• References

• Testing

• Namespace management procedures

• Mobile code

• Java developer programs

• Navy-specific guidelines

• Cross-reference between NESI and other initiatives

• Open-source tools

NESI Part 5: Net-Centric Developer's Guide

362

Technical References
Books
Design patterns
Alur, Deepak, John Crupi and Dan Malks. Core J2EE Patterns: Best Practices and Design
Strategies

ISBN:0131422464.

Douglass, Bruce Powel. Real-Time Design Patterns: Robust Scalable Architecture for Real-Time
Systems. ISBN 0201699567.

Fowler, Martin. Analysis Patterns: Reusable Object Models. ISBN 0201895420

Fowler, Martin. Patterns of Enterprise Application Architecture. ISBN 0321127420

Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements of
Object-Oriented Software. ISBN 0201633612

Monday, Paul B. Web Services Patterns: Java Edition. ISBN 1590590848

Pattern languages of programming design (4 volumes):

Coplien, James O. and Douglas C. Schmidt. Pattern Languages of Programming Design.
ISBN 0201607344

Vlissides, John M., James O. Coplien, Norman L. Kerth, and Norman Kerth. Pattern
Languages of Programming Design 2. ISBN 0201895277

Martin, Robert C., Dirk Riele, and Frank Buschman. Pattern Languages of Programming
Design 3. ISBN 0201310112

Harrison, Neil, Brian Foote, and Hans Rohnert. Pattern Languages of Programming
Design 4. ISBN 0201433044

Pattern-oriented software architecture (3 volumes):

Buschmann, Frank, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael Stal.
Pattern-Oriented Software Architecture, Volume 1: A System of Patterns. ISBN
0471958697

Schmidt, Douglas, Michael Stal, Hans Rohnert, and Frank Buschmann. Pattern-Oriented
Software Architecture, Volume 2, Patterns for Concurrent and Networked Objects. ISBN
0471606952

Kircher, Michael and Prashant Jain. Pattern-Oriented Software Architecture, Patterns for
Resource Management. ISBN 0470845252

Design and usability
Krug, Steve. Don’t Make Me Think: A Common Sense Approach to Web Usability. ISBN
0789723107.

Nielsen, Jakob. Designing Web Usability: The Practice of Simplicity. ISBN 156205810X.

Appendices

363

Sather, Andrew, Ardith Ibanez, and Bernie Dechant. Creating Killer Interactive Web Sites: The
Art of Integrating Interactivity and Design. ISBN 1568303734.

Frameworks
Fayad, Mohamed E. and Ralph E. Johnson (eds). Domain-Specific Application Frameworks:
Frameworks Experience by Industry. ISBN 0471332801

Fayad, Mohamed E., Douglas Schmidt, and Ralph E. Johnson (eds). Building Application
Frameworks: Object-Oriented Foundations of Framework Design. ISBN 0471248754

Fayad, Mohamed E., Douglas Schmidt, and Ralph E. Johnson (eds). Implementing Application
Frameworks: Object-Oriented Frameworks at Work. ISBN 0471252018

Microsoft
Ballinger, Keith. .NET Web Services: Architecture & Implementation. ISBN 0321113594

Chappell, David. Understanding Microsoft Windows 2000 Distributed Services. ASIN
157231687X

Chappell, David. Understanding .NET. ISBN 0201741628

Chen, Xin. BizTalk Server 2002: Design and Implementation. ISBN 1590590341

Freeman, Adam and Allen Jones. Microsoft .NET XML Web Services: Step By Step. ISBN
0735617201

Guest, Simon. Microsoft .NET and J2EE Interoperability Toolkit. ISBN 0735619220

Honeycutt, Jerry. Introducing Microsoft Windows Server 2003. ISBN 0735615705

Kanalakis, John. Developing .NET Enterprise Applications. ISBN 1590590465

Kemp, Christine, Richard Kemp, and Marcus Goncalves. Designing Enterprise Solutions With
Microsoft Technologies. ASIN 013086756X

Lowe-Norris, Alistair G. Windows 2000 Active Directory. ISBN 0596004664

MacDonald, Matthew. Microsoft .NET Distributed Applications: Integrating XML Web Services
and .NET Remoting. ISBN 0735619336

Mohr, Stephen. Designing Distributed Applications with XML, ASP, IE5, LDAP and MSMQ.
ISBN 1861002270

Peltzer, Dwight. .NET and J2EE Interoperability. ISBN 0072230541

Platt, David S. Understanding COM+: The Architecture for Enterprise Development Using
Microsoft Technologies. ASIN 0735606668

Sessions, Roger. COM+ and the Battle for the Middle Tier. ASIN 0471317179

Sharma, Chetan. Wireless Internet Enterprise Applications. ASIN 0471393827

Short, Scott. Building XML Web Services for the Microsoft .NET Platform. ASIN 0735614067

Stanek, William R. Microsoft SQL Server 2000: Administrators Pocket Consultant. ISBN
0735611297

NESI Part 5: Net-Centric Developer's Guide

364

Process
Ezran, Michel, Maurizio Morisio, Colin Tully, and C. J. Tully. Practical Software Reuse. ISBN
1852335025.

Reifer, Donald J. Practical Software Reuse. ISBN 0471578533.

Other
Foster, Lonnon R. Palm OS Programming Bible. ISBN 0764549618.

Web sites
Commercial

Topic or Group Site

Application
Development magazine

http://www.appdevadvisor.co.uk/

ASN (Abstract System
Notation) and XML

http://asn1.elibel.tm.fr/xml/

IT white papers, web
casts, and case studies

http://www.itpapers.com/

Java technologies, latest
releases

http://java.sun.com/products/index.html

J2EE http://java.sun.com/j2ee

Model-driven
architecture

http://www.omg.org/mda

.NET resources http://microsoft.com/net/

Objective Technology
Group

http://www.theotg.com/

Object Management
Group

http://www.omg.org

Public NMCI web site http://www.nmci-isf.com

UDDI http://www.uddi.org

Web services http://webservices.org
http://www.xml.com/pub/a/2001/04/04/webservices

WSDL http://www.w3.org/tr/wsdl

Appendices

365

WS-I http://www.ws-i.org

XACML http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=xacml

Government

Topic or Group Site

Cookie/privacy policy http://www.c3i.osd.mil/org/cio/doc/cookies.html

DoD mobile code policy http://www.dod.mil/nii/org/cio/doc/mobile-code11-7-00.html

DoD PKI policy http://www.c3i.osd.mil/org/cio/doc/may172001.pdf

DoD web content policy http://www.defenselink.mil/webmasters

INFOSEC http://infosec.navy.mil

Section 508 Compliance http://www.section508.gov

Microsoft

Site Description

http://www.microsoft.com/technet/prodte
chnol/

TechNet is an information and community resource
for IT professionals. The TechNet program includes
the TechNet web site on various .NET Product
Technologies and also includes technical briefings,
events, and webcasts.

http://msdn.microsoft.com/library/ The Microsoft Developer Network (MSDN) is a set
of online and offline services for developers using
Microsoft products and technologies. It includes the
.NET Code Wise Community
(http://www.gotdotnet.com/content/codewise/defaul
t.aspx).

http://msdn.microsoft.com/webservices/ This site provides help with web services
enhancements for Microsoft .NET (WSE). It is a
supported add-on to Microsoft Visual Studio .NET
and the Microsoft .NET Framework. It provides the
latest web-services capabilities to keep pace with the
evolving web services protocol specifications.

http://searchwebservices.techtarget.com/ This site provides web services and XML developer
tips vis-à-vis .NET and J2EE technologies. There
was a great article in June of 2004 by Peter Aiken
on .NET Tools for Working with XM” that was

NESI Part 5: Net-Centric Developer's Guide

366

used for this paper.

http://www.theserverside.net/ This site provides news, discussions, technical
articles, interactive chats, and case studies on .NET
technologies. These range from ADO.NET,
ASP.NET, the .NET Compact Framework to web
services specifications and XML tools.

http://www.franklins.net/dotnetrocks

Carl Franklin and Rory Blyth interview experts to
bring you insights into .NET technology and the
state of software development. Especially helpful
for ASP.NET and custom controls section of the
paper.

http://www.code-magazine.com CoDe (Component Developer) Magazine, written by
.NET developers for .NET developers, is one of the
favorite magazines for developers involved in
Microsoft technologies. In-depth articles with
practical code samples satisfy the search for great
technical information. Each bi-monthly issue
contains detailed explanations of Visual Studio
.NET and the .NET Framework.

http://www.gotdotnet.com/ This site includes the .NET Code Wise Community
(http://www.gotdotnet.com/content/codewise/default
.aspx). It provides good examples of ASP.NET and
ADO.NET and some interesting tools to use within
a .NET development environment.

http://www.dotnetjohn.com/ This site provides good examples of both ASP.NET
and ADO.NET. It shares .NET programming
information with other developers.

http://www.developer.com/net/ This site shares .NET programming information
with other developers and provides good examples
of ASP.NET, XML and web services, and C#.

http://www.informit.com/ This site shares .NET programming information
with other developers and provides good examples
of ASP.NET, SQL Server, LDAP (Active
Directory), and C#.

http://www.15seconds.com/ This site shares .NET programming information
with other developers and provides good examples
of ASP.NET, SQL Server, MSMQ, ADSI, C#, and
ADO.NET.

http://www.schema.net/ This site was part of a family of XML-related sites
started in 1997. It was the first site dedicated to
cataloging XML DTDs and schemas. It was actively
maintained until around 2000 and may become

Appendices

367

active again soon.

http://xml.com/ This site provides good examples of XML and web
services that apply to both .NET and J2EE
platforms.

http://www.JNBridge.com/ This is a third-party vendor site dedicated to an
interoperability bridge between the J2EE platform
and the .NET platform.

http://j-integra.intrinsyc.com/ This site is a third-party vendor site dedicated to an
interoperability bridge between the J2EE platform
and the .NET platform.

Automated testing increases the speed at which applications are delivered by creating
standardized testing, which minimizes errors and promotes reusability of components and
services in various deployment environments.

NESI Part 5: Net-Centric Developer's Guide

368

Automated testing tools
Some examples of automated tools include:

• WinRunner (http://www.mercury.com/us/)

• JUNIT (http://www.junit.org/index.htm)

• Rational Robot (http://www.rational.com)

• Compuware QARun (http://www.compuware.com)

• Empirix eTest (http://www.empirix.com)

• SilkTest (http://www.segue.com)

Appendices

369

Environments
Consider the following environments when testing your applications:

Enterprise and web
application environments

BEA Web Logic 7.1
Sun ONE Release 7
JBoss
Tomcat/Apache

Operating systems Win 2K
Win XP
Solaris 2.8

Browsers Internet Explorer 5.5 and above

NESI Part 5: Net-Centric Developer's Guide

370

Security testing tools
Security testing must meet COE I&RTS security requirements. To meet these requirements, use
the following DISA security tools:

• UNXSCP_1.2.0.0 (Solaris)

• WINSCP_1200 (Win2K)

Appendices

371

Namespace management procedures
The following process outlines how to retrieve available application or service names from the
DoD Metadata Registry and Clearinghouse. Developers should contact the appropriate
namespace manager to check for exceptions to this process.

To determine available application or service names:
1. Log in to the DoD Metadata Registry and Clearinghouse web site at

http://diides.ncr.disa.mil/.

Note: Namespace management procedures are undergoing change at this time. Updated
procedures will be available on this web site.

2. Click the XML button in the Click to Select Registry section.

3. Click Login to log in to the XML Registry.

• If you already have a username and password, you can log in from this page.

• If you do not have an account, click the Registration link to request one. A
military or government sponsor is required to validate your account request.

Once you log in, you will be returned to the XML Registry page.

4. Click the Show me the Namespaces link. You can view the general list of namespaces
without logging in, but you will not be able to view any details about the namespaces
until you log in.

NESI Part 5: Net-Centric Developer's Guide

372

5. Click the Namespace link for the functional area of your application. You will need a

valid login to view namespace information details.

Appendices

373

6. Search the XML registry to verify that the application/service name does not already

exist. To do this, use the form at the bottom of the Namespace page to create a query that
filters the information resources for the selected namespace.

Queries can determine existing XML elements, attributes, and schemas as well as
packages and domain values. This can help you determine a unique application or service
name and also those pieces complimentary to the service being developed.

7. Click the email link to contact the appropriate namespace manager to confirm the name
acquisition and update the appropriate repository. The email must contain the following
information:

• Point of contact (POC) information

• Program name

• Application name

• Namespace selected

Note: This site is also available on the SIPRNET and JWICS.

NESI Part 5: Net-Centric Developer's Guide

374

Mobile code
There are two documents for mobile code guidance:

• The Mobile Code Policy document. This guidance does not cover mobile devices. You
can download the policy document from http://www.dod.mil/nii/org/cio/doc/mobile-
code11-7-00.html. To protect DoD systems from malicious or improper use of mobile
code, developers must assess and control the risks. The DoD Mobile Code Policy should
be the first step in an iterative process to reduce these risks. It categorizes mobile code
technologies and restricts their application based on their potential to cause damage if
used maliciously.

• For additional policy guidance and usage restrictions, see Assistant Secretary of Defense
(C3I) Memorandum, Subject: “Policy Guidance for use of Mobile Code Technologies in
Department of Defense (DOD) Information Systems,” 7 November 2000.

Appendices

375

Java developer programs
Sun has three developer programs that may be of interest to NESI developers:

• Java.net: An open-source program that doesn't require a login.

• Sun Developer's Network: Provides access to Sun's services, product downloads, and
community support forums.

• Java Community Process: A site with news about Java development, training, and
events.

To access Java.net:
1. Go to http://java.sun.com.

2. Click java.net under Sun Resources.

To register for the Sun Developer's Network:
1. Go to http://java.sun.com.

2. Click Join a Sun Developer Network Community. A registration page appears. Follow
the on-screen prompts.

To access the Java Community Process:
1. Go to http://java.sun.com.

2. Click Java Community Process under Sun Resources.

To get the latest Java environment:
1. Go to http://java.sun.com/j2se/1.4.2/download.html and download either:

• The Java Runtime Environment (JRE), which allows end-users to run Java
applications

• The Java Software Developer’s Kit (SDK), which allows you to create J2SE
applications and also contains the JRE (recommended)

2. Install the software, using the following options:

• Install the Java Runtime Environment in your target directory, along with all
other open-source products.

• Make sure to register your browser(s), so they can use Java plug-ins.
Note: For all other options, use the default settings or the settings you know to
be appropriate.

NESI Part 5: Net-Centric Developer's Guide

376

Navy-specific guidelines
This appendix lists tools and information that are specific to the Navy.

COE-M build lists
Solaris build list
Global Command and Control Systems Maritime (GCCS-M) Integration Product Standard Flash
Load Build 11.1 (Solaris 8) Version 3.0, dated 20 May 2004.

Segments and Configuration Prefix Version #

Solaris Operating System 2.8 7/03

Solstice DiskSuite 4.2.1

Solaris Software Companion CD 2/02

Solaris 8 Software Supplement CD 7/03

DII COE Kernel 4.2.0.9

DII COE Kernel Patch Patch 11 Beta 4

Replace the libAPM.so File

Solaris Security Patch Update Update

Java Platform 2 JAVA2 4.7.0.1

J2SE JRE 1.4.1 _03 J2JRE 4.7.1.0

Netscape Browser NSWEB 4.7.0.1

Perl PERL 4.2.0.1

Adobe Acrobat Reader ACRORD 4.7.1.0

SecurityPolicyConfigurationTool SPCFG 4.9.0.0

COE Update System Security Level UPDTSL 4.7.0.0 Beta

COE Security Banner SECBNR 4.6.0.0

DII COE System Menu Interface SMB 4.0.0.8

OnlineDocs ONDOC 4.2.1.0

Appendices

377

NSS Libraries NSSLIB 4.7.1.0 Beta

COE Security Services COESS 4.7.1.0 Beta

SSAF Application SSAFAP 4.7.1.0 Beta

TCP Wrappers TCPW 4.7.0.0

VirusScan for UNIX VSCANU 4.7.0.0

VSCANU Update Fix

Crack CRACK 4.7.0.0

Swatch-M SWATCM 3.2.3.0

SPCFG Maritime Segment SPCFGM 1.0.0.6

SPCFGM Patch 1 SPCFGM 1.0.0.6P1

JMTK Utilities Segment JMU 4.7.0.1

ICSF Bundle (Note 2) ICSF 4.5.2.0

IFLFIX Segment IFLFIX 1.0.0.3

ICSFPatchP5Bundle (Note 3) ICSF 4.5.2.0P5

JMTK-V Map Data JMVMD 4.5.2.0

JMTK SDBM JMS 4.7.0.1

JMTK Analysis JMA 4.7.0.1

JMS Draw Module JDM 4.7.0.1

BEA WebLogic Server BEAWLS 4.7.1.1

BEA Client-Side JAR File BEAJAR 4.7.1.0

XVFB XVFB 1.0.0.0

I3 Configure Middle Tier I3CMT 4.7.1.4

Modular Embed Doc Utility Arch MEDULA 4.7.1.3

Standard Int On-site Present Sys SINOPS 4.7.1.3

Composite System Level Doc Data Navy CSLDDN 4.7.1.4

C4I Common Extensions CCE 4.5.5.0

NESI Part 5: Net-Centric Developer's Guide

378

C4I Maritime Extensions CME 4.5.5.1

Air Tasking Exchange Runtime ATXRUN 4.7.0.1

Tadil-A/B Interface Link11 4.5.2.8

Extensible Information Model XIM 4.5.3.0

Extensible Information Views XIV 4.5.3.0

Extensible Data Source Interface XDSI 4.5.3.0

Extensible Web Tier Support XWEB 4.5.3.0

Extensible Chart Integration XCI 4.5.3.0

XIM Patch 2 XIM 4.5.3.0P2

XIV Patch 2 XIV 4.5.3.0P2

XDSI Patch 2 XDSI 4.5.3.0P2

XWEB Patch 2 XWEB 4.5.3.0P2

XCI Patch 2 XCI 4.5.3.0P2

CCE Network Time Protocol CNTP 4.5.2.0

DII COE Print Services Server PRINTS 4.7.1.0 Beta 2

DII COE Print Services Drivers PRINTD 4.7.1.0 Beta 2

DII COE Print Services Client PRINTC 4.7.1.0 Beta 2

NIS+ Admin Tool NISADM 4.4.0.0

TCLTK TCLTK 4.0.0.0

ZIRCON Internet Relay Chat Clt ZIRCC 4.0.0.2

ZIRCON Internet Relay Chat Svr ZIRCS 4.0.0.1

MTC/TADIL J Interface MTC 4.5.8.5

TBM Computer-Based Training TBMCBT 4.6.0.0

TBM Warning and Display TBMWD 6.3.1.1

Intelligence Shop Interfaces ISHOPI 4.7.1.2

Intelligence Shop Client-Tier ISHOPC 4.7.1.3

Appendices

379

Sybase System SW Asset Mgnt SYSAM 1.0.1.0

Sybase Adaptive Svr Enterprise SYBADP 12.5.0.0

Sybase Adaptive Svr Enterprise Patch 1 SYBADP 12.5.0.0P1

Sybase ASE Config for I3 SYBI3C 4.7.1.2

Database Administrator Runtime DBAdmR 4.0.0.0

Database Administrator Server DBAdmS 4.0.0.0

Sybase Administration SYBADM 4.7.1.2

NITFS Services NITFS 4.7.2.0

Image Transformation Services IMX 4.7.2.0

ITS Client ITS 4.7.2.0

Automated Image Import Module AIIM 4.7.2.0

Universal Data Import and Export UDIE 4.7.2.0

Java Image Video Exploitation JIVE 4.7.2.0

Intelligence Shop Middle-Tier ISHOPM 4.7.1.2

ITSWEB ITSWEB 4.7.2.0

Alerts Services Client Runtime ALTCLT 4.5.2.5

CAPL Framework Segment CAPFW 4.2.0.1

CAPL COE Clients Segment CAPCC 4.2.0.1

CAPL ICSF Clients Segment CAPIC 4.2.0.1

DII COE Message Processor CMP 4.4.0.0

Waterspace DB Layer WSMDFL 4.5.2.5

Waterspace Message Services WSMMS 4.5.2.5

Waterspace Visualization WSMV 4.5.2.5

Waterspace Plotting WSMPLT 4.5.2.5

Waterspace PMI Server WSMPMI 4.5.2.5

Waterspace Voyage Monitor WSMVM 4.5.2.5

NESI Part 5: Net-Centric Developer's Guide

380

Space Common Tactical Dataset SCTD 4.1.0.0

GALE-Lite Interface Segment GLIS 4.5.4.0

Joint MTI Client JMTIC 4.0.2.0

Audit Viewer AUDVWR 4.0.0.1

Global Backup and Restore GBAR 1.0.0.2

WebCop WEBCOP 3.8.0.4

ITS Server ITSSVR 4.7.2.0

General Military Intelligence DB GMIDB 4.7.0.1

Common Track Data Store CTDS 4.7.1.2

Image Management Database IMDB 4.7.1.2

Navy Emitter Reference File DB NERF 4.7.1.2

ELINT Parameters List Database EPL 4.7.1.2

I3GMI I3GMI 4.7.1.2

EDSS Database Install CDEDSS 2.6.0.0

MCMSEG (Mainstream) MSMIW 9.2.2.0

Tactical Warning Database CDTWF 4.7.1.1

Tactical Track Archiver Database CDTKAR 4.7.1.1

Track Warning Database CDTRKW 4.7.1.1

Message Warning Database CDMSGW 4.7.1.1

IMPACTS Toolkit IMPXTK 4.7.1.1

Tactical Warning Framework TWF 4.7.1.1

Tactical Track Archiver TKAR 4.7.1.1

Tactical Warning Toolkit TWTK 4.7.1.1

Track Warning TRKW 4.7.1.1

Message Warning MSGW 4.7.1.1

Appendices

381

COE-M Solaris Build 9 and Build 10 lists
Build 10 list as of 12/02/02

Segment Name Build 9 Version Build 10 Version

Solaris 8 2/02

DII COE Kernel 4.2.0.5 4.2.0.5

Solaris Patch Update 4.4.4.0 4.4.4.0

DII COE Kernel 4.2 Patch - 4.2.0.0P8A 4.2.0.0P8A 4.2.0.0P8A

Java Platform 2 (Java2) 4.6.0.0 4.6.0.0

J2SE JRE 1.4 - 4.6.0.0 (J2JRE) 4.6.0.0 4.6.0.0

NIS+ Admin Tool (NISADM) 4.3.0.0 4.3.0.0

Netscape Web Browser (WEBBr) 4.6.0.0 4.6.0.0

PERL 4.2.0.1 4.2.0.1

SecurityPolicyConfigurationTool (SPCFG) 4.2.0.1 4.2.0.1

SPCFG Data Segment (SPCFGD) 4.6.0.1 4.6.0.1

SPCFG Vulnerability Fixes Data (SPVULD) 4.6.0.0 4.6.0.0

COE Update System Security Level
(UPDTSL)

4.6.0.0 4.6.0.0

COE Security Banner (SECBNR) 4.6.0.0 4.6.0.0

COE Security Banner Template (SBDATA) 4.6.0.0 4.6.0.0

DII COE System Menu Interface (SMB) 4.2.1.0 4.2.1.0

OnlineDocs (ONDOC) 4.2.1.0 4.2.1.0

Alerts Services Server (ALTSVR) 4.2.0.1 4.2.0.1

Alerts Services Client Runtime (ALTCLT) 4.2.0.1 4.2.0.1

CAPL Framework (CAPFW) 4.1.4.0 4.1.4.0

CAPL COE Clients (CAPCC) 4.1.4.0 4.1.4.0

NSS Libraries (NISSLIB) 4.5.0.0 4.5.0.0

NESI Part 5: Net-Centric Developer's Guide

382

SSAF Application (SSAFAP) 4.4.0.0 4.4.0.0

COE Security Services (COESS) 4.5.0.0 4.5.0.0

TCP Wrappers (TCPW) 4.6.0.0 4.6.0.0

VirusScan for UNIX (VSCANU) 4.5.0.0 4.5.0.0

Berkley Internet Name Domain (BIND) 4.0.5.0 4.0.5.0

Crack 4.0.0.1 4.0.0.1

JMTK Utilities Segment (JMU) 4.6.0.1 4.6.0.1

Integrated Foundation Library (IFL) 4.5.1.0 4.5.1.1

JMTK Visualization (JMV) 4.5.1.0 4.5.1.1

Application Framework (AFW) 4.5.1.0 4.5.1.1

Universal Comms Processor (UCP) 4.5.1.0 4.5.1.1

Tactical Management System (TMS) 4.5.1.0 4.5.1.1

TMS Visualization (TMSV) 4.5.1.0 4.5.1.1

ICSF C4I (IC4I) 4.5.1.0 4.5.1.1

Integrated Foundation Library (IFL) 4.5.1.0P1

JMTK Visualization (JMV) 4.5.1.0P1

Application Framework (AFW) 4.5.1.0P1

Universal Comms Processor (UCP) 4.5.1.0P1

Tactical Management System (TMS) 4.5.1.0P1

TMS Visualization (TMSV) 4.5.1.0P1

JMTK SDBM (JMS) 4.6.0.1 4.6.0.1

JMTK Analysis (JMA) 4.6.0.1 4.6.0.1

CAPL ICSF Client (CAPIC) 4.1.4.1 4.1.4.1

JMTK-V Map Data (JMVMD) 4.5.1.0 4.5.1.1

ICSF Online Documentation (ICSFDC) 4.5.1.0 4.5.1.1

DII COE Print Services Server (PRINTS) 4.4.1.1 4.4.1.1

Appendices

383

DII COE Print Services Client (PRINTC) 4.4.1.1 4.4.1.1

DII COE Print Services Drivers (PRINTD) 4.4.1.1 4.4.1.1

Internet Relay Chat Server (IRCS) 4.0.0.0 4.0.0.0

Internet Relay Chat Client (IRCC) 4.3.0.0 4.3.0.0

C4I Common Extensions (CCE) 4.5.2.3 4.5.3.1

C4I Maritime Extensions (CME) 4.5.2.3 4.5.3.1

Tactical Information Bcst Svc (TIBS) 4.5.1.0 4.5.1.0

Air Tasking Exchange Runtime (ATXRUN) 4.5.5.1 4.5.5.1

Air Tasking Exchange Help (ATXHLP) 4.5.5.0 4.5.5.0

Tadil-A/B Interface (LINK11) 4.5.0.5 4.5.0.5

COP Synchronization Tools (CST) 4.5.6.0 4.5.6.0

COP Synchronization Tools (CST) 4.5.6.0P1 4.5.6.0P1

TMS Secret Data (TMSSD) 4.5.0.3 4.5.0.3

Extensible Information Systems (XIS) 4.5.0.3 4.5.0.3

XIS Map Integration (XISMI) 4.5.0.3 4.5.0.3

XIS Patch (XISP4) 4.5.0.0P4 4.5.0.0P4

XISMI Patch (XISMIP4) 4.5.0.0P4 4.5.0.0P4

Common Internet File System (CIFS) 4.4.0.0 4.4.0.0

CCE Network Time Protocol (CNTP) 4.3.0.0 4.3.0.0

TreTabular Decoders (TTDEC) 4.5.0.0 4.5.0.0

Windows build list

Segment name Prefix Version #

 COMPOSE 2.0.1

 UAM

DII COE Kernel COE 4.2.0.5

NESI Part 5: Net-Centric Developer's Guide

384

DII COE Kernel 4.2 Patch - 4.2.0.0P8 K42P8B 4.2.0.0P8B

W2K Patch Update W2KPTH 4.5.0.0

Java Platform 2 Java2 4.6.0.0

J2SE JRE 1.4 - 4.6.0.0 J2JRE 4.6.0.0

*Netscape Web Browser WEBBr 4.6.0.0

COE Update System Security Level UPDTSL 4.6.0.0

COE Security Banner SECBNR 4.6.0.0

NSS Libraries NSSLIB 4.5.0.0

COE Security Services COESS 4.5.0.0

SSAF Application SSAFAP 4.4.0.0

*Norton Anti Virus NAV 4.5.2.0

OnlineDocs ONDOC 4.2.1.0

Alerts Services Server ALTSRV 4.2.0.2

Alerts Services Client Runtime ALTCLT 4.2.0.2

*Microsoft Office Pro 2000 OFFICE 4.4.0.0

JMTK Utilities Segment JMU 4.6.0.1 ED

Integrated Foundation Library IFL 4.5.1.0

JMTK Visualization JMV 4.5.1.0

Application Framework AFW 4.5.1.0

Universal Comms Processor UCP 4.5.1.0

Tactical Management System TMS 4.5.1.0

TMS Visualization TMSV 4.5.1.0

ICSF C4I IC4I 4.5.1.0

Integrated Foundation Library IFL 4.5.1.0P1

JMTK Visualization JMV 4.5.1.0P1

Application Framework AFW 4.5.1.0P1

Appendices

385

Universal Comms Processor UCP 4.5.1.0P1

Tactical Management System TMS 4.5.1.0P1

TMS Visualization TMSV 4.5.1.0P1

JMTK SDBM JMS 4.6.0.1 ED

JMTK Analysis JMA 4.6.0.1 ED

CAPL Framework CAPFW 4.1.4.0

CAPL COE Clients CAPCC 4.1.4.0

CAPL ICSF Client CAPIC 4.1.4.1

ICSF Online Documentation ICSFDC 4.5.1.0

JMTK-V Map Data JMVMD 4.5.1.0

Internet Relay Chat Client IRCC 4.0.1.0

C4I Common Extensions CCE 4.5.2.3 ED

C4I Maritime Extensions CME 4.5.2.3 ED

Tactical Information Bcst Svc TIBS 4.5.1.0 ED

Air Tasking Exchange Runtime ATXRUN 4.5.5.1 ED

Air Tasking Exchange Help ATXHLP 4.5.5.0 ED

Tadil-A/B Interface Link11 4.5.0.3 ED

COP Synchronization Tools CST 4.5.6.0

COP Synchronization Tools CST 4.5.6.0P1

Extensible Information Systems XIS 4.5.0.3

XIS Map Integration XISMI 4.5.0.3

XIS Patch XISP4 4.5.0.0P4

XISMI Patch XISMIP4 4.5.0.0P4

CCE Network Time Protocol CNTP 4.3.0.0

*MS Security Config Templates W2KCET 4.6.0.1

NESI Part 5: Net-Centric Developer's Guide

386

COMPOSE software list
COMPOSE software build list version 2.03

Platform Application name
(if COTS, provide vendor name)

Version

Server Symantec Live Update Admin Tool 2.0

Server Adobe Acrobat Reader 6.0

Server Netscape Communicator 7.02

Server RealOne Player 2.0

Server Macromedia Shockwave 8.5.1

Server Flash Player 6.0.79

Server Apple QuickTime Movie and Audio Viewer 6.3

Server Microsoft Netmeeting 3.01

Server Microsoft Windows Media Player 9

Server Microsoft Windows 2000 Advanced Server 2000

Server SP4 for Microsoft Windows 2000 SP4

Server Microsoft ISA Server Enterprise Edition 2000

Server Microsoft Exchange Enterprise Edition 2000

Server Symantec Norton AntiVirus Corporate Edition 8.1

Server Symantec AVF for Exchange 3.05

Server NicoMak WinZip 8.1SR1

Server Ipswitch WS-FTP Pro 8.01

Server Veritas Backup Exec 9.0

Server Microsoft Internet Explorer 6.0

Server Microsoft SQL Server 2000 Standard Edition 2000

Server SP3a for Microsoft SQL Server 2000 SP3a

Appendices

387

Server Symantic AntiVirus Systems Center Console

Workstation Microsoft Windows 2000 Professional 2000

Workstation SP4 for Microsoft Windows 2000 SP4

Workstation Microsoft Internet Explorer 6.0SP1

Workstation Norton AntiVirus Corporate Edition 8.1

Workstation NicoMak WinZip 8.1SR1

Workstation Ipswitch WS-FTP Pro 8.01

Workstation Adobe Acrobat Reader 6.0

Workstation RealOne Player 2.0

Workstation Macromedia Shockwave 8.5.1

Workstation Flash Player 6.0.79

Workstation Apple QuickTime Movie and Audio Viewer 6.3

Workstation Microsoft Netmeeting 3.01

Workstation Microsoft Windows Media Player 9

Workstation Microsoft ISA Server Enterprise Edition Client 2000

Workstation Microsoft Office 2000 Professional 2000

Workstation ActivCard Gold 2.2

Workstation Personal Security Manager for Netscape 1.4

Workstation Microsoft Windows Active Directory Client 5.6

Workstation Netscape 7.02

Workstation Microsoft Office XP Professional SP2

Workstation Microsoft Office Professional (with FrontPage) SP2

Workstation Java Runtime Environment 1.4.2

Workstation Microsoft Office 2000 Professional SP3

Workstation Microsoft Office 2000 Premium SP3

Workstation COE 4209 Kernel 4.2.0.9

NESI Part 5: Net-Centric Developer's Guide

388

Network security policy guidance
Follow the UTNProtect Policy Document CNO614 / HQMC C4 for network security policy
guidance.

Appendices

389

Cross-reference between NESI and other
initiatives
This section shows how NESI guidance overlaps or does not overlap with the developer’s guides
for other DoD initiatives such as Navy Enterprise Portal (NEP) Architecture.

Navy Enterprise Portal (NEP) architecture
Architecture diagrams

The figure below shows four areas where NESI guidance fits in to this architecture:

NESI Part 5: Net-Centric Developer's Guide

390

Correlation between NEADG and NESI

Topics
Navy Enterprise
Architecture
Developer’s
Guide (NEADG)

NESI Focus Area NESI Guide

General building and
structuring web
services

 1 & 4 Web services

Insulated interface
guidance

1 & 2

Interface design

Web applications
structural guidance Web applications

Style sheets Appendix F
GUI design
guidelines

Portal integration
levels

Chapter 2

 Web portals

Security Appendix G
1 & 3

Testing security
Web security
Web services
security

Appendices

391

NEP URL rewriting Appendix H

UDDI for web
services

4

UDDI

NESI Part 5: Net-Centric Developer's Guide

392

Open-source tools
This section explains how to obtain and use the open-source tools referred to in various examples
throughout this guide.

Disclaimer: This example uses open-source products, since NESI itself is built on the open-
source philosophy. However, the products described are not necessarily the best choice for every
circumstance.

Apache Ant
Apache Ant is a Java-based build tool that automates the build process. Ant uses XML descriptor
files to capture the build process. It has the advantage of being interoperable with all other build
tools.

For information about Apache Ant, including a manual on how to use it, see
http://ant.apache.org. If you install Ant, the documentation is in the <Ant install_dir>\docs
directory. See Generating Javadoc for an example of generating Javadoc with an Ant build.xml
file.

Installing Ant

To install Ant:
1. Go to http://ant.apache.org/.

2. Under Download, click Binary Distributions.

3. Scroll down to the Current Release of Ant section and download the appropriate
version.

4. Expand the zip file into your target directory. WINZIP creates a subdirectory named
apache-ant-<version>.

5. Follow the setup instructions to install Ant.

6. Make sure to add <Ant install_dir>\bin to the Windows system path variable.
Note: If any of the directories in the path before the new path contain an ant.bat file, it
will take precedence over the one you just added.

7. Make sure that you have defined an ant_home and a java_home environment variable.

8. Open a command window and type ant –version to verify the installation.

Guidance
1. Operate on each directory independently. When you create a patch or new software

release, it should only contain the new or modified classes. All unmodified classes
remain untouched. This eliminates the need to perform a complete regression test and
security scan.

2. Define a set of standard targets, such as:

• init

Appendices

393

• compile

• validate

• package

• deploy

• test

• clean

• doc

Custom Ant extensions
Ant lets you customize the build process. For information on how to create custom extensions,
see the Ant reference manual.

Apache Axis
To install Axis:

1. Go to http://ws.apache.org/axis/index.html.

2. Download and install version 1.1.

To test Axis:
1. Open a web browser on the same machine as the Tomcat server and go to a URL such as

http://localhost:8080/axis/, where:

• localhost is the host name if the console is running on the same machine as
the WebLogic server

• 8080 is the default HTTP port number for Tomcat

• axis is the name of the web application

NESI Part 5: Net-Centric Developer's Guide

394

The Apache-AXIS home page appears.

2. Click Validate to open the Axis Happiness page. All the checks should be successful.

Depending on your Java configuration, you may see two warnings about optional JARs
that you need to install:

• mail.jar from <JavaMail install_dir> to <Axis install_dir>\WEB-INF\lib

• xmlsec.jar from xml-security-bin-<version>.zip into <Axis install_dir>\WEB-
INF\lib

Appendices

395

3. Follow the links provided and install the components.

Tomcat
Tomcat is developed by Jakarta, which is a project of the Apache Software Foundation. For
information about Tomcat, see http://jakarta.apache.org/tomcat/index.html.

Installing Tomcat
The Tomcat 4.x server implements the JSP and Servlet specifications. Different versions of
Tomcat apply to different specifications, so it is important to get the correct version. Also, a web
application in Tomcat should work in any other server that is compliant with the specification.
This installation uses version 4 of Tomcat.

Prerequisites
To install and run Tomcat, you must install a Java Software Development Kit for version 1.2 (or
later).

To install the Java Software Developer Kit:
1. Download and install the Java SDK, version 1.2 or later.

2. Set a JAVA_HOME environment variable to the the installation directory.

To install Tomcat:
1. Go to http://jakarta.apache.org/tomcat/index.html. Scroll down to view a comparison of

features in the different versions.

2. In the Release Builds section, download the latest release of the Tomcat server.

3. Install the release.

Using Tomcat

To start Tomcat:
1. Define the JAVA_HOME environment variable and set it to <Java install_dir>.

2. Define the CATALINA_HOME environment variable and set it to <Tomcat
install_dir>.
Note: Some applications may require additional Tomcat environment variables, such as
CATALINA_OPTS. One thing this variable does is set the web server memory
requirements. If you use it for that, set CATALINA_OPTS = -Xmx256m.

3. After the server has successfully started, view a local Tomcat home page by going to the
http://localhost:8080/ link from a web browser. (If you changed your port
number, substitute it for 8080.)

Xalan-Java
Xalan-Java is an XSLT processor made by Apache. XSLT processors transform XML
documents into HTML, text, or other XML document types. Xalan-Java implements XSL
Transformations (XSLT) Version 1.0 (http://www.w3.org/TR/xslt) and XML Path Language
(XPath) Version 1.0 (http://www.w3.org/TR/xpath).

NESI Part 5: Net-Centric Developer's Guide

396

You can use Xalan-Java from the command line, in an applet or a servlet, or as a module in other
program.

For Xalan-Java FAQs, documentation, and sample applications, go to
http://xml.apache.org/xalan-j/.

To install Xalan-Java:
1. Go to http://xml.apache.org/xalan-j/downloads.html.

2. Click the xalan-j distribution directory link to download the binary distributions.

3. Select a mirror site, then download the zip file that is appropriate for your site.

4. Expand the zip file into your target directory. WINZIP creates a subdirectory named
xalan-<version> that contains the Java XSLT software.

Xerces2 Java Parser
Xerces2 is the next generation of high-performance, fully compliant XML parsers in the Apache
Xerces family. This new version of Xerces introduces the Xerces Native Interface (XNI), a
complete framework for building parser components and configurations that is extremely
modular and easy to program. Xerxes2 is one of the products you can install to run the UDDI
browser.

The Apache Xerces2 parser is the reference implementation of XNI. You can write other parser
components, configurations, and parsers using the Xerces Native Interface. For complete design
and implementation documents, refer to the XNI Manual. Xerxes2 is a fully conforming XML
schema processor.

To obtain FAQs and documentation for Xerxes2, go to http://xml.apache.org/xerces2-
j/index.html.

To install the Xerxes2 Java Parser:

Appendices

397

1. Go to http://xml.apache.org/xerces2-j/download.cgi.

2. Download the appropriate file. This example shows the Xerces-J-bin.2.6.0.zip file.

NESI Part 5: Net-Centric Developer's Guide

398

3. Expand the zip file into your target directory. WINZIP creates a subdirectory named
xerxes-<version> that contains the XML parser software.

4. Configure Xerxes for your environment, including setting your class path.

jUDDI
Disclaimer: This example uses open-source products, since NESI itself is built on the open-
source philosophy. However, the products described are not necessarily the best choice for every
circumstance.

jUDDI (pronounced "Judy") is an open-source Java implementation of the Universal Description,
Discovery, and Integration (UDDI) specification for web services. It uses the Tomcat
environment. If you use jUDDI, you must program with UDDI4J to insert entries into the
registry, since jUDDI does not come with an insertion tool.

Note: This is not the DoD Enterprise Registry. This example is intended only to help familiarize
developers with the technology.

You must have the following things running to use jUDDI:

• Database

• JDBC interface

• Browser

Although the specifics may differ, most UDDI registries use a database, browser, and some kind
of server.

Key characteristics
• Compliant with UDDI version 2.0

• Works with any relational database that supports ANSI-standard SQL (MySQL, DB2,
Sybase, JDataStore, etc.)

• Deployable on any Java application server that supports the Servlet 2.3 specification
(Jakarta Tomcat, WebSphere, WebLogic, Borland Enterprise Server, JRun, etc.)

• Supports a clustered deployment configuration

• Integrates with existing authentication systems

Example: Setting up a jUDDI registry
The pages in this section explain how to set up a UDDI registry, using jUDDI as an example.

Installing jUDDI

Installing the jUDDI service
1. Go to http://sourceforge.net/project/showfiles.php?group_id=42875 and download the

latest binaries.

Appendices

399

2. Expand the zip file into your target directory. WINZIP creates a juddi subdirectory.

3. Ensure that Tomcat is not running.

4. Copy the juddi.war file from the newly extracted juddi\bin\build directory to <Tomcat
install_dir>\webapps\juddi. This enables you to configure jUDDI.

5. Ensure that the java_home environment variable is defined.

6. Start the Tomcat server, then shut it down again.

Configuring the properties files
Follow these directions to configure the jUDDI properties files. Other than these changes, leave
the initial configuration as is.

juddi.properties
This file sets the database configuration.

1. Go to: <drive letter>:\<Tomcat install_dir>\webapps\juddi\WEB-
INF\classes\juddi.properties.

2. Find the following lines and remember the database user name and password for later
reference. If you change them here, you must also change them in the database.
The jUDDI ConnectionPool properties (Optional)
juddi.useConnectionPool=false
juddi.jdbcDriver=com.MySQL.jdbc.Driver
juddi.jdbcURL=jdbc:MySQL://localhost/juddi
juddi.jdbcUser=juddi
juddi.jdbcPassword=juddi

NESI Part 5: Net-Centric Developer's Guide

400

3. Find the following lines and enter the correct ports:
jUDDI Proxy Properties (Used by RegistryProxy)
see http://www.juddi.org for more information
juddi.inquiryURL=http://localhost:8080/juddi/inquiry
juddi.publishURL=http://localhost:8080/juddi/publish
juddi.adminURL=http://localhost:8080/juddi/admin

log4j.properties
This file handles setup logging.

1. Go to <drive letter>:\<Tomcat install_dir>\webapps\juddi\WEB-
INF\classes\log4j.properties.

2. Find the following lines and indicate the level of logging you want:
Set root category priority to DEBUG and its appender to
LOGFILE.
log4j.rootCategory=WARN, LOGFILE

web.xml
This file sets up the server.

1. Go to :\\webapps\juddi\WEB-INF\web.xml.

2. Find the following lines and uncomment them:

 <!-- Uncomment to enable jUDDI's Administrative Services !
 <servlet-mapping>
 <servlet-name>jUDDIAdminServlet</servlet-name>
 <url-pattern>/admin</url-pattern>
 </servlet-mapping>
 <!-- -->

3. Find the following lines and check the database name:
<resource-ref>
 <description>jUDDI DataSource</description>
 <res-ref-name>jdbc/juddiDB</res-ref-name>
 javax.sql.DataSource
 <res-auth>CONTAINER</res-auth>
 </resource-ref>

4. Find the following lines and update the paths:
 <env-entry>
 <env-entry-name>log4j.propsFile</env-entry-name>
 <env-entry-value>
 <drive letter>:\<Tomcat install_dir>\webapps\juddi\WEB-
INF\classes
 </env-entry-value>
 <env-entry-type>java.lang.String</env-entry-type>
 </env-entry>
 <env-entry>
 <env-entry-name>juddi.propsFile</env-entry-name>
 <env-entry-value>
 <drive letter>:\<Tomcat install_dir>\webapps\juddi\WEB-
INF\classes
 </env-entry-value>
 <env-entry-type>java.lang.String</env-entry-type>

Appendices

401

 </env-entry>
</web-app>

Testing the server
1. Start Tomcat.

2. Go to localhost:8080/juddi/index.html.

3. Click Validate. The server runs a number of tests and displays the results. The data
source check fails because you have not connected the database yet. Everything else
should be up and running.

Installing MySQL for jUDDI persistence
The jUDDI service needs a database. jUDDI supports several Relational Database Management
Systems (RDBMS). This section shows how to use MySQL to provide data persistence.

UDDI scripts
 jUDDI provides UDDI scripts for creating tables in various databases. Go to <jUDDI
install_dir>\ddl\ to find the following support files.

Script Database

juddi_ase.ddl Sybase

juddi_db2.ddl IBM’s DB2

juddi_hsql.ddl HSQL

juddi_mysql.ddl Open-source MySQL

Creating a database

To set up MySQL for UDDI
1. Make sure you have installed MySQL and the MySQL Control Center.

2. Make sure you have installed the MySQL JDBC drivers.

3. Open a command window and set the default directory to <MySQL install_dir>\bin.

4. Start the MySQL command processor as root with the command:

MySQL --user=root MySQL

5. To create a new database named juddiDB, enter:

CREATE DATABASE IF NOT EXISTS juddiDB;

6. This name must be the same name as the one in the juddi.properties file. Note that it is
case-sensitive.

7. Enter the following command to create a root user who can access the juddiDB database
from outside:
GRANT ALL PRIVILEGES ON juddiDB.* TO juddi@'%'

NESI Part 5: Net-Centric Developer's Guide

402

 IDENTIFIED BY 'juddi' WITH GRANT OPTION;

8. Enter the following command to create a root user who can access the juddidb database
locally.
GRANT ALL PRIVILEGES ON juddiDB.* TO juddi@localhost
 IDENTIFIED BY 'juddi' WITH GRANT OPTION;

The user name and password are set in juddi.properties. If you use different names,
you will not be able to connect to the database.

9. Log out of the command processor.

Creating tables
After you create the jUDDI database, you need to create tables for the UDDI registry information.
There are two ways to do this:

• from a command window

• from the MySQL command center (MySQLcc)

To create tables from a command window:
1. Open a command window and set the default directory to <MySQL install_dir>\bin.

2. Log in to the database you defined above (juddiDB) with the UDDI database user name
and password.

MySQL --database=juddiDB --user=juddi --password=juddi

3. Go to <jUDDI install_dir>\ddl\ and run the MySQL script, juddi_MySQL.ddl.

4. Type show tables to see a list of the tables you just created:

Appendices

403

It is normal to see a long list of Unknown Table errors. The tables are not there to begin
with, and the script creates them after doing some other setup procedures.

5. Enter the following code to create a jUDDI publisher. Not all UDDI registries have a
publisher.
DELETE FROM PUBLISHER
 WHERE PUBLISHER_ID = 'juddi';

INSERT INTO PUBLISHER
 (PUBLISHER_ID,
 PUBLISHER_NAME,
 ADMIN
)
 VALUES
 ('juddi',
 'Juddi user',
 'false'
);

The DELETE statement may fail if the PUBLISHER_ID of juddi does not already exist.
Ignore this error.

To create tables from MySQLcc:
1. To start the MySQLcc, double click the desktop icon or click Start and select Program

Files > MySQL Command Center > MySQL Command Center.

2. Start and register the MySQL service. A registration dialog should open automatically the
first time you start MySQLcc. This example uses the juddiDB database on a local
machine (i.e. localhost). The user name and password are both juddi.

NESI Part 5: Net-Centric Developer's Guide

404

3. Maximize the MySQLcc window in the Console Manager.

4. Select File > SQL Query to open a SQL command window.

5. From MySQLcc, go to <jUDDI install_dir>\bin\ddl and open the MySQL script,
juddi_MySQL.ddl. This opens the JUDDI MySQL Data Definition Language (DDL)
file.

Appendices

405

6. Select Query > Execute to execute the jUDDI table creation script.

7. After executing the creation script, you need to define a publisher. Select Query > Clear

Query to clear the buffer.

8. Enter the following command into the query command area:
DELETE FROM PUBLISHER
 WHERE PUBLISHER_ID = 'juddi';

INSERT INTO PUBLISHER
 (PUBLISHER_ID,
 PUBLISHER_NAME,
 ADMIN
)
 VALUES
 ('juddi',
 'Juddi user',
 'false'
);

This command inserts a single record into the Publisher table that identifies the juddi user.
The first DELETE statement may fail if you have not previously run the INSERT statement,
because it is trying to delete the [nonexistent] juddi user.

NESI Part 5: Net-Centric Developer's Guide

406

Publisher table
The PUBLISHER table contains the following columns:

Column name Description

PUBLISHER_ID The user ID the publisher uses when authenticating.
IMPORTANT: This should be the same value used to
authenticate with the external authentication service.

PUBLISHER_NAME The publisher's name (or in UDDI-speak, the Authorized
Name).

ADMIN Indicates if the publisher has administrative privileges. Valid
values for this column are true or false. The ADMIN value is
currently not used.

Configuring jUDDI
Now you need to add some configuration parameters to the web server.

1. Go to <drive letter>:\<Tomcat install_dir>\conf\ and open server.xml.

2. Copy the following code to the end of the file. In the <Resource section, ensure that the
name matches that of the database.

<Context
 className="org.apache.catalina.core.StandardContext"
 backgroundProcessorDelay="-1"

Appendices

407

 cachingAllowed="true"
 charsetMapperClass="org.apache.catalina.util.CharsetMapper"
 configFile="<drive letter>:\<Tomcat
install_dir>\conf\Catalina\localhost\juddi.xml"
 cookies="true"
 crossContext="true"
 debug="5"
 displayName="jUDDI"
 docBase="juddi"
 domain="Catalina"
 engineName="Catalina"
 j2EEApplication="none"
 j2EEServer="none"
 lazy="true"
 managerChecksFrequency="6"
 path="\juddi"
 privileged="false"
 reloadable="true"
 startupTime="30"
 swallowOutput="false"
 tldScanTime="0"
 useNaming="true"
 wrapperClass="org.apache.catalina.core.StandardWrapper">
 <Logger className="org.apache.catalina.logger.FileLogger"
 debug="0"
 directory="logs"
 prefix="localhost_juddiDB_log"
 suffix=".txt"
 timestamp="true"
 verbosity="1"/>
 <Resource
 auth="Container"
 name="jdbc/juddiDB"
 scope="Shareable"
 type="javax.sql.DataSource"/>
 <ResourceParams name="jdbc/juddiDB">
 <parameter>
 <name>factory</name>
 <value>org.apache.commons.dbcp.BasicDataSourceFactory</value>
 </parameter>
 <parameter>
 url
 <value>jdbc:MySQL://localhost:3306/jUDDIDB?autoReconnect=true</v
alue>
 </parameter>
 <parameter>
 <name>password</name>
 <value>juddi</value>
 </parameter>
 <parameter>
 <name>maxWait</name>
 <value>10000</value>
 </parameter>
 <parameter>
 <name>maxActive</name>
 <value>100</value>
 </parameter>

NESI Part 5: Net-Centric Developer's Guide

408

 <parameter>
 <name>driverClassName</name>
 <value>org.gjt.mm.MySQL.Driver</value>
 </parameter>
 <parameter>
 <name>username</name>
 <value>juddi</value>
 </parameter>
 <parameter>
 <name>maxIdle</name>
 <value>30</value>
 </parameter>
 </ResourceParams>
</Context>

Testing jUDDI
1. Make sure that the MySQL service is up and running.

2. Stop and start Tomcat.

3. Open a browser and go to http://localhost:8080/juddi/happyjuddi.jsp. For
the port, use the value from juddi.xml.

The Happiness page should appear, and all tests should report positive results. If not,
correct the problems until all tests report positive results.

The jUDDI registry is now set up. The next step is to connect to it using UDDI4J or a UDDI
browser.

Appendices

409

Installing a UDDI API
Install UDDI4J to create a UDDI publisher for the jUDDI registry, which does not come with its
own publisher. UDDI4J is a Java class library that provides an API to interact with a UDDI
registry. For more information, go to http://www.uddi4j.org.

To install UDDI4J:
1. Go to http://www-124.ibm.com/developerworks/oss/uddi4j/.

2. Click Downloads/Releases and download the appropriate binary.

3. Expand the zip file into your target directory. WINZIP creates a subdirectory named
uddi4j that contains the Java UDDI4J software.

UDDI browsers
The UDDI browser is an open-source project that lets users review and manipulate the contents
of public and private UDDI registries via a web browser. The UDDI browser can talk to any
UDDI registry, such as jUDDI.

About the UDDI browser
The UDDI browser (shown below) contains the following elements:

• a menu bar

• a hierarchical tree for the search result nodes

• the details portion that gives the name, value, and language values associated with the
search result nodes

• a message area that provides feedback to the caller

NESI Part 5: Net-Centric Developer's Guide

410

Installing the UDDI browser

Prerequisites
To install the UDDI browser, you must first install the following software:

Apache Ant A platform-independent XML build tool. This is not required if
you use the binaries for the browser.

Apache Axis A SOAP transport mechanism.

JavaMail A set of abstract classes that model a mail system. You do not
need this if your Java environment already has mail.

Java Standard Secure
Socket Edition (JSSE)

This is already present if you have installed the Java
Developer’s Kit version 1.4 or later.

UDDI4J A Java class library with an API that interacts with a UDDI
registry.

Xalan-Java An XSLT that transforms XML documents into HTML, text, or
other XML document types

Xerces2 Java Parser A parser for XML schemas

Installing the browser

To install the UDDI browser:

Appendices

411

1. Go to http://uddibrowser.org.

2. Click Download and download the latest version.

3. Expand the zip file into your target directory. WINZIP creates a subdirectory named ub-
<version> that contains the browser software.

Configuring the batch file
The simplest way to start the browser is to execute a batch file.

To configure ub.bat:
1. Go to <UB_install dir>\bin and open ub.bat.

2. Enter the following line at the top of the file:

CD ..\

3. Update all the paths in ub.bat.

Running and testing the UDDI browser

Starting the browser

To start the UDDI browser:
1. Make sure that the MySQL database server and the Tomcat web server are up and

running.

2. Execute ub.bat.

Testing the browser against a public registry
To test the browser, run a query against a public registry and see if you get results.

To query a public registry:
1. Click Search in the browser window.

2. In the Find dialog, scroll down to the desired registry and click Search.

The results appear in the browser window. The list of nodes is on the left side, and the

NESI Part 5: Net-Centric Developer's Guide

412

query status information is at the bottom.

3. Select nodes on the left to view details about them on the right.

Testing the browser against a private registry

To connect to the jUDDI registry:

Appendices

413

The UDDI browser lets you view two types of registry: public and private. Public registries come
predefined in the browser. jUDDI is a private registry because you installed it locally.

1. Select Manage Registries > UDDI Registries.

2. Click Add.

• To add a read-only query, define a read-only UDDI registry entry that uses the

Tomcat Standard HTTP Port 8080. Provide the user name and password you
defined earlier (user name: juddi, password: juddi). The Inquiry and Public URLs
must point to the registry you just installed.

NESI Part 5: Net-Centric Developer's Guide

414

• To add a read-write query, define a read-write UDDI registry entry that uses the

Tomcat Standard HTTP port 8080 for reading and SSL port 8443 for writing.
Provide the username and password defined earlier (user name: juddi, password:
juddi).

The new entries appear on the list of managed registries.

To find UDDI objects:
These instructions show how to test the browser against your local registry, by searching for
various objects.

1. Click Search in the browser window.

2. Select the tModel option.

3. Select the jUDDI registry entry you just created from the list (here, named NESI UDDI)
and click Search.

Appendices

415

A screen like the following one appears. The data that appear here are the predefined data
that you entered when you executed the predefined MySQL script to create UDDI tables.

The registry is now ready for use.

417

Glossary

.NET: To address the confusing maze of computer languages, libraries, tools, and toolkits that
were necessary for creating multi-tier applications, Microsoft developed the .NET
Framework and integrated it into Microsoft Windows as a component. It supports
building and running multi-tier and service-oriented architectures, including web services
and client and server applications. It simplifies the process of designing, developing, and
testing software, allowing individual developers to focus on core, application-specific
code.

A
ACAT: Acquisition Category. DoD acquisition program categories that facilitate decentralized

decision making, execution, and compliance with statutorily imposed requirements.The
categories determine the level of review, decision authority, and applicable procedures.
(Source: http://www.dau.mil/pubs/glossary/11th Glossary 2003.pdf)

access control: The methods by which interactions with resources are limited to collections of
users or programs for the purpose of enforcing integrity, confidentiality, or availability
constraints. (Source: http://java.sun.com/j2ee/1.4/docs/glossary.html)

ACID: Atomicity, Consistency, Isolation, Durability. The acronym for the four properties
guaranteed by transactions. (Source: http://java.sun.com/j2ee/1.4/docs/glossary.html)

ActiveX: An ActiveX control is similar to a Java applet. However, ActiveX controls have full
access to the Windows OS. This gives them much more power than Java applets, plus a
risk that the applet may damage software or data on your machine. To control this risk,
Microsoft developed a registration system so that browsers can identify and authenticate
an ActiveX control before downloading it. Another difference between Java applets and
ActiveX controls is that Java applets can be written to run on all platforms, whereas
ActiveX controls are currently limited to Windows environments.

adapter: An intermediary that translates between incompatible component interfaces, allowing
them to communicate.

adapter pattern: A generalized API that provides a common set of function calls across different
applications. It enables classes with incompatible interfaces to work together. It is
sometimes called a wrapper because an adapter class wraps the implementation of
another class in the desired interface. This pattern makes heavy use of delegation, where
the delegator is the adapter (or wrapper) and the delegate is the class being adapted.

AGI: Americal Geological Institute

air warfare: Air defense against airborne weapons including theater ballistic missiles. Operations
include surveillance, offensive counter air, defensive counter air, and electronic warfare.

anonymous access: Accessing a resource without authentication. (Source:
http://java.sun.com/j2ee/1.4/docs/glossary.html)

NESI Part 5: Net-Centric Developer's Guide

418

ANSI: American National Standards Institute. Administrator and coordinator of the United States
private-sector voluntary standardization system. ANSI facilitates the development of
American National Standards (ANS) by accrediting the procedures of standards-
developing organizations. The Institute remains a private, nonprofit membership
organization supported by a diverse constituency of private and public sector
organizations. (Source:http://web.ansi.org/)

AoA: Analysis of Alternatives. Provides analysis and suggestions for performance characteristics.
Assesses the advantages and disadvantages of alternatives, including the sensitivity of
each alternative to possible changes in key assumptions or variables. (Source:
http://www.dau.mil/pubs/glossary/11th Glossary 2003.pdf)

Apache Ant: A Java-based build tool that automates the build process using XML descriptor
files to capture the build process.

APB: Acquisition Program Baseline. Establishes program threshold and objective values for the
minimum number of cost, schedule, and performance attributes that describe the program
over its life cycle. (Source:
http://www.dtic.mil/cjcs_directives/cdata/unlimit/3170_01.pdf)

API: Application Programming Interface. A special type of interface that specifies the calling
conventions with which one component may access the resources and services provided
by another component. APIs are defined by sets of procedures or function-invocation
specifications. An API is a special case of an interface.

API adapter: A generalized API that provides a common set of function calls across different
applications.

applet: A J2EE component that typically executes in a web browser. Applets can also execute in
a variety of other applications or devices that support the applet programming model.
(Source: http://java.sun.com/j2ee/1.4/docs/glossary.html)

application diversity: A situation where users can pull multiple apps to access the same data or
choose the same app (e.g., for collaboration).

application server: A platform for developing and deploying multi-tier distributed enterprise
applications.

architecture: (1) The structure of components, their relationships, and the principles and
guidelines governing their design and evolution over time. (2) A high-level design that
provides decisions about the problem(s) that the product will solve, component
descriptions, relationships between components, and dynamic operation description. (3)
A framework or structure that portrays relationships among all the elements of the subject
force, system, or activity. Also, the fundamental organization of a system, embodied in its
components, their relationships to each other and the environment, and the principles
governing its design and evolution. The organizational structure of a system or
component, their relationships, and the principles and guidelines governing their design
and evolution over time. (Source: IEEE 610.12)

architecture views, software: Conceptual Architecture. The purpose of the conceptual
architecture is to direct attention at an appropriate decomposition of the system without
delving into details. Moreover, it provides a useful vehicle for communicating the
architecture to non-technical audiences, such as management, marketing, and users. It
consists of the Architecture Diagram (without interfaces) and an informal component
specification (which we call CRC-R cards) for each component.

Glossary

419

architecture, functional: The hierarchical arrangement of functions, their internal and external
(to the aggregate itself) functional interfaces and external physical interfaces, their
respective functional and performance requirements, and design constraints.

architecture, software: (1) The software architecture of a program or computing system is the
structure or structures of the system, which comprise (a) software components, (b) the
externally visible properties of those components, and (c) the relationships among them.
(2) The structure and relationships among the components of a computer program. The
software architecture may also include the program’s interface with its operations
environment.

architecture, system: (1) A logical, physical structure that specifies interfaces and services
provided by the system components necessary to accomplish system functionality. (2)
The structure and relationship among the components of a system. The system
architecture may also include the system’s interface with the operational environment.

AS: Acquisition Strategy. High-level business and technical management approach designed to
achieve program objectives within specified resource constraints. Framework for
planning, organizing, staffing, controlling, and leading a program. (Source:
http://www.dau.mil/pubs/glossary/11th Glossary 2003.pdf)

ASD (NII): Assistant Secretary of Defense for Networks and Information Integration.
(Source:http://www.dod.mil/nii/)

ASP: Active Server Page. A script that is executed by Microsoft Internet Information Services.
The output is returned to the user as HTML. Typically, an ASP script generates a
customized web page on the fly before sending it to the user. ASPs are specific to
Microsoft, only run on IIS or PWS, can contain HTML, JScript, and VBScript, and can
access COM components.

asset: Any sensor, weapon, aircraft, boat, unmanned air vehicle (UAV), etc., directly controlled
by own ship.

Associated Measurement Report (AMR): A sensor measurement that has been processed by
the originating sensor for clutter rejection and meets defined signal-to-noise parameters,
and has been associated with either a local sensor track or a global composite track.

association: (1) The automatic or manual establishment of a relationship between two or more
tracks when the information on them is deemed to pertain to the same contact. (2) The
process of identifying and linking data sets that may correspond to the same object while
retaining each track as an individual entity.

assured sharing: Trusted accessibility to net resources such as data, services, apps, people, and
collaborative environments.

ATAM: Architecture Tradeoff Analysis Method (SEI). A risk mitigation method that can occur
early in the software development life cycle when it is relatively inexpensive to change
architectural decisions. (Source: http://www.sei.cmu.edu/ata/ata_init2.html)

ATO: Authority to Operate. An ATO or IATO is required prior to conducting operational tests on
a deployable system. An ATO or IATO is granted only after the bulk of certification and
accreditation activities are concluded, and the Designated Approving Authority (DAA) is
satisfied with the residual risk to the system. (Source:
http://akss.dau.mil/dag/Guidebook/IG_c9.9.2.2.asp)

attribute: A distinct characteristic of an object. Real-world object attributes are often specified in
terms of their physical traits, such as size, shape, weight, and color. Cyberspace object

NESI Part 5: Net-Centric Developer's Guide

420

attributes might describe size, type of encoding, and network address.
(Source:http://www.oasis-open.org/committees/download.php/3343/oasis-200304-wsrp-
specification-1.0.pdf)

attribute data: Any non-kinematic data provided by a sensor for a track. Examples include IFF
mode codes, INTEL data (e.g., imagery), EW data (e.g., parametric data), non-
cooperative target recognition (NCTR) data, etc.

authentication: The process that verifies the identity of a user, device, or other entity in a
computer system, usually as a prerequisite to allowing access to resources in a system.
The Java servlet specification requires three types of authentication (basic, form-based,
and mutual) and supports digest authentication. (Source:
http://java.sun.com/j2ee/1.4/docs/glossary.html)

authorization: The process by which access to a method or resource is determined.
Authorization depends on the determination of whether the principal associated with a
request through authentication is in a given security role. A security role is a logical
grouping of users defined by the person who assembles the application. A deployer maps
security roles to security identities. Security identities may be principals or groups in the
operational environment. (Source: http://java.sun.com/j2ee/1.4/docs/glossary.html)

AWT: Abstract Window Toolkit. The AWT is part of the Java Foundation Classes (JFC) -- the
standard API for providing graphical user interfaces (GUIs) for Java programs.

B
B2B: Business-to-Business integration

baseline, allocated: The initially approved documentation describing a system’s functional,
performance, interoperability, and interface requirements that are allocated from those of
the system or higher level subsystem; interface requirements with interfacing subsystems;
design constraints; derived functional and performance requirements; and verification
requirements and methods to demonstrate the achievement of those requirements and
constraints.

baseline, functional: The initially approved documentation describing a system’s or
configuration item’s functional performance, interoperability, and interface requirements.
Also, the verification required to demonstrate the achievement of those specified
requirements.

battle force: A standing operational naval task force organization of carriers, surface combatants,
and submarines assigned to numbered fleets. A battle force is subdivided into battle
groups.

BCD: Binary Coded Decimal. Binary-coded decimal (BCD) is, after character encodings, the
most common way of encoding decimal digits in computing and in electronic systems. In
BCD, a digit is usually represented by four (binary) bits, of which the leftmost (written
conventionally) has value 8, and the remaining three have values 4, 2, and 1. Only the
combinations of these bits that, when summed, have values in the range 0-9 are valid.
Other combinations are sometimes used for sign or other indications. (Source:
http://en.wikipedia.org/wiki/Binary_Coded_Decimal)

BCI: Business Community Integration

black box: Provides a specified function or functions at a specified level of performance for an
agreed-upon cost.

Glossary

421

BPEL: Business Process Execution Language. BPEL is emerging as the standard for assembling
a set of discrete services into an end-to-end process flow, radically reducing the cost and
complexity of process integration initiatives. (Source:
http://www.oracle.com/technology/products/ias/bpel/index.html)

business logic: The code that implements the functionality of an application. In the Enterprise
JavaBeans architecture, this logic is implemented by the methods of an enterprise bean.
(Source:http://java.sun.com/j2ee/1.4/docs/glossary.html)

business method: A method of an enterprise bean that implements the business logic or rules of
an application. (Source: http://java.sun.com/j2ee/1.4/docs/glossary.html)

C
C2: Command and Control. The exercise of authority and direction by a properly designated

commander over assigned forces in the accomplishment of the mission. C2 functions are
performed through an arrangement of personnel, equipment, communications, facilities,
and procedures. A commander employs these when planning, directing, coordinating, and
controlling forces and operations in the accomplishment of the mission.

C2ERA: Command and Control Enterprise Reference Architecture. A technical concept of
operationsfor building information systems better suited to the NCW environment.
C2ERA prescribed the technical architecture mandated by the Designated Acquisition
Commander for C4ISR Enterprise Integration in the U.S. Air Force. C2ERA is one of
two NCW projects that merged to form NESI. The other project was RAPIDS.

C2I: Command, Control, and Intelligence / Command and Control Integration

C2IEDM: Command and Control Information Exchange Data Model. A data model that is
managed by the Multilateral Interoperability Programme (MIP). It originated with experts
from various NATO partners and from the Partnership-for-Peace nations. This data
model is in the process of being submitted to OMG for consideration as the standard for
information exchange. It falls under the shared operational picture exchange service.
(Source: http://www.mip-site.org/MIP_DMWG.htm)

C2W: Command & Control Warfare

C3: Command, Control, & Communications

C4I: Command, Control, Communications, Computers, and Intelligence

C4ISR: Command, Control, Communications, Computers, and Intelligence, Surveillance, and
Reconnaissance

CA: Certificate Authority. A trusted organization that issues public key certificates and provides
identification to the bearer. (Source: http://java.sun.com/j2ee/1.4/docs/glossary.html)

capability on demand: Delivery of and/or access to capabilities (data, applications, connectivity)
incrementally and as needed, on demand, and controlled by user clearance.

cascade delete: A deletion that triggers another deletion. A cascade delete can be specified for an
entity bean that has container-managed persistence. (Source:
http://java.sun.com/j2ee/1.4/docs/glossary.html)

CCB: Configuration Control Board. Also Change Control Board. Duties include reviewing
change requests, making decisions, and communicating decisions made to affected
groups and individuals. Represents the interests of program and project management by

NESI Part 5: Net-Centric Developer's Guide

422

ensuring that a structured process is used to consider proposed changes and incorporate
them into a specified release of a product.

CCM: CORBA Component Model. Part of the CORBA 3.0 Specification, CCM extends the
CORBA object model and enforces composition rather than inheritance. Similar to a
CORBA version of EJB that can be used with any language on any platform. (Source:
http://www.omg.org/technology/documents/formal/components.htm)

CDATA: Character Data. A predefined XML tag for character data that means “don't interpret
these characters,” as opposed to parsed character data (PCDATA), in which the normal
rules of XML syntax apply. CDATA sections are typically used to show examples of
XML syntax. (Source: http://java.sun.com/j2ee/1.4/docs/glossary.html)

CDD: Capabilities Development Document. Provides operational performance attributes,
including supportability, for the acquisition community to design the proposed system.
Includes key performance parameters (KPP) and other parameters that guide the
development, demonstration, and testing of the current increment. Outlines the overall
strategy for developing full capability. (Source: http://www.dau.mil/pubs/glossary/11th
Glossary 2003.pdf)

CDRL: Contract Data Requirements List. A list of contract data requirements that are authorized
for a specific acquisition and made a part of the contract. (Source:
http://www.dau.mil/pubs/glossary/11th Glossary 2003.pdf)

CDS: Cross Domain Security. User authentication across multiple application spaces.

CES: Core Enterprise Services. Generic information services that apply to any COI, provide the
basic ability to search the enterprise for desired information, and then establish a
connection to the desired service. (Source:
http://www.defenselink.mil/nii/org/cio/doc/GIG_ES_Core_Enterprise_Services_Strategy
_V1-1a.pdf)

CGI script: Common Gateway Interface. CGI is a standard for interfacing external applications
with information servers, such as HTTP or web servers. A plain HTML document that
the web daemon retrieves is static, which means it exists in a constant state: a text file
that doesn't change. A CGI program, on the other hand, is executed in real time, so it can
output dynamic information.

CIM: Common Information Model

CJCS directive: Chairman of the Joint Chiefs of Staff Directives. Instructions, Manuals, Notices,
Guides, and other policy and procedures published by the Chairman, Joint Chiefs of
Staff. (Source: http://www.dtic.mil/cjcs_directives/index.htm)

CJCSI: Chairman of the Joint Chiefs of Staff Instruction

class-based design: Any design that incorporates objects and classes. Contrast with object-
oriented design and objects-based design.

class-based programming language: A programming language that enables programmers to
define and use objects and classes; for example, CLU. Contrast with object-based
programming languages and object-oriented programming languages.

CLI: Command Line Interface. A method of interacting with a computer by giving it lines of
textual commands (that is, a sequence of characters) either from keyboard input or from a
script. (Source: http://en.wikipedia.org/wiki/Command_line_interface)

Glossary

423

client: A system entity that accesses a web service. (Source: http://www.oasis-
open.org/committees/download.php/3343/oasis-200304-wsrp-specification-1.0.pdf)

client-certificate authentication: An authentication mechanism that uses HTTP over SSL, in
which the server and (optionally) the client authenticate each other with a public key
certificate that conforms to a standard that is defined by X.509 Public Key Infrastructure.
(Source: http://java.sun.com/j2ee/1.4/docs/glossary.html)

CLR: Common Language Runtime. The CLR is the basis for everything in the Microsoft .NET
Framework. It provides a standard implementation by providing a common set of
datatypes (integers, strings, classes, interfaces), specifications for how inheritance works,
and a common set of semantics for languages built on it. (Source:
http://en.wikipedia.org/wiki/Common_Language_Runtime)

CMM: Capability Maturity Model

cohesion: The manner and degree to which the tasks performed by a single software module are
related to one another. Types include coincidental, communicational, functional, logical,
procedural, sequential, and temporal. Synonym: module strength. Contrast with coupling.
In a well-designed, highly modular software design, the modules will have high cohesion;
that is, each will have a clearly defined set of functions that have a close relationship to
each other. This facilitates changes to modules since the changes will affect only the
closely-related functions. In contrast, modules that contain multiple, unrelated functions
blur the integrity of the software’s design since the unrelated functions are bound into a
single module, thereby creating dependencies that inhibit the ability to easily make
changes. (Source: IEEE Std 610.12-1990)

COI: Community of Interest. A collection of people who exchange information using a common
vocabulary in support of shared missions, business processes, and objectives. The
community is made up of the users/operators who participate in the information
exchange,the system builders who develop computer systems for these users, and the
functional proponents who define requirements and acquire systems on behalf of the
users.

collaboration: Portal members can communicate synchronously through chat or messaging, or
asynchronously through threaded discussion, blogs, and email digests (forums).

COM: Component Object Model. A Microsoft software architecture for building component-
based applications. COMobjects are discrete components, each with a unique identity,
which expose interfacesthat allow applications and other components to access their
features. COM objects are more versatile than Win32 DLLs because they are completely
language-independent, have built-in interprocess communications capability, and easily
fit into an object-oriented program design. COM was first released in 1993 with OLE2,
largely to replace the interprocess communication mechanism DDE used by the initial
release of OLE. ActiveX is based on COM.

combat identification (CID): CID is the process of attaining an accurate characterization of
detected objects in the joint battlespace to the extent that high confidence and timely
application of military options and weapons resources can occur. Depending on the
situation, this characterization may be limited to “friend,” “enemy,” or “neutral.” In other
situations, other characterizations may be required, including, but not limited to, class,
type, nationality, and mission configuration.

commercial software: “Commercial software is software developed by businesses which aim to
make money from its use. Most commercial software is proprietary, but there is

NESI Part 5: Net-Centric Developer's Guide

424

commercial free software, and there is non-commercial non-free software.” (Source:
GNU.org: Categories of Free and Non-Free Software:
http://www.gnu.org/philosophy/categories.html)

commit: The point in a transaction when all updates to any resources involved in the transaction
are made permanent. (Source: http://java.sun.com/j2ee/1.4/docs/glossary.html)

common language runtime: The common language runtime (CLR) is a high-performance
engine for running applications built using the .NET Framework. Code that targets the
runtime and whose execution is managed by the runtime is referred to as managed code.
Responsibility for tasks such as creating objects, making method calls, and so on is
delegated to the CLR, which enables it to provide additional services to the code as it
executes. While the component is running, the CLR provides services—such as memory
management (including garbage collection), process management, thread management,
and security enforcement—and satisfies any dependencies that the component may have
on other components. (Source:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnbda/html/guidenetapp.asp)

Community of Interest (COI) service: A service that may be offered to the enterprise, but is
owned and operated by a Community of Interest to provide or support a well-defined set
of mission functions and associated information.

compiler: “A computer program that translates programs expressed in a high-order language into
their machine language equivalent.” (Source: IEEE Std 610.12-1990)

component: “One of the parts that make up a system. A component may be hardware or software
and may be subdivided into other components. Note the terms 'module,' 'component,' and
'unit' are often used interchangeably or defined to be subelements of one another in
different ways depending on the context. The relationship of these terms is not yet
standardized.” (Source: IEEE Std 610.12-1990) “A product that is not subject to
decomposition from the perspective of a specific application.”(Source: ISO 10303-1)

component-based software: Mission applications that are architected as components integrated
within a component framework

component, system: A basic part of a system. System components may be personnel, hardware,
software, facilities, data, material, services, and/or techniques that satisfy one or more
requirements in the lowest levels of the functional architecture. System components may
be subsystems and/or configuration items.

composite/collaborative track: A representation of an entity that is formed by combining
individual instances of measurement data or a collection of measurements from one or
more sensors into a single composite/collaborative track state vector and combined
attribute information.

conceptual model: Captures the concepts of the relational database and can help enforce the first
three normalization rules

condition: A variable of the operational environment or situation in which a unit, system, or
individual is expected to operate that may affect performance.

connection pooling: A technique for establishing a pool of resource connections that applications
can share on an application server.

connector: A portable service API to external resources.

CONOPS: Concept of Operations

Glossary

425

consumer: A system entity invoking producers in a manner conforming to a specification. For
example, a portal aggregating content from portlets accessed using the WSRP protocol is
a type of consumer. (Source: http://www.oasis-
open.org/committees/download.php/3343/oasis-200304-wsrp-specification-1.0.pdf)

container: A standard extension mechanism for containers that provides connectivity to
enterpriseinformation systems. A connector is specific to an enterprise information
system. It consists of a resource adapter and application development tools for enterprise
information system connectivity. The resource adapter is plugged in to a container
through its support for system-level contracts defined in the Connector architecture.
(Source: http://java.sun.com/j2ee/1.4/docs/glossary.html)

content and document management: Services that support the full lifecycle of document
creation and provide mechanisms for authoring, approval, version control, scheduled
publishing, indexing, and searching.

copyright: The U.S. Copyright Act, 17 U.S.C. §§ 101 – 810 (17 U.S.C. §§ 101 - 810), is Federal
legislation enacted by Congress under its Constitutional grant of authority to protect the
writings of authors. The Copyright Act covers architectural design, software, the graphic
arts, motion pictures, and sound recordings (§ 106). A copyright gives the owner the
exclusive right to reproduce, distribute, perform, display, or license his work. The owner
also receives the exclusive right to produce or license derivatives of his or her work (§
201(d)). Limited exceptions to this exclusivity exist for types of “fair use,” such as book
reviews (§ 107). To be covered by copyright a work must be original and in a concrete
“medium of expression” (§ 102). Under current law, works are covered whether or not a
copyright notice is attached and whether or not the work is registered.

CORBA®: Common Object Request Broker Architecture. CORBA “wraps” code written in
another language into a bundle containing additional information on the capabilities of
the code inside, and explaining how to call it. The resulting wrapped objects can then be
called from other programs (or CORBA objects) over the network. The CORBA
specificiation defines APIs, communication protocol, and object/service information
models to enable heterogeneous applications written in various languages running on
various platforms to interoperate. (Source: http://en.wikipedia.org/wiki/CORBA)

core enterprise service: A ubiquitous, common solution service that provides capabilities
essential to the operation of the enterprise.

correlation: (1) The determination that a locally derived track represents the same object or point
as another track, and/or the process of combining two such tracks/data under one track
number. (Logicon) (2) The process of identifying tracks believed to represent the same
object and replacing them with a single track, combining the data from the duplicate
tracks as appropriate.

CoS: Class of Service. A queuing discipline. The algorithm compares fields of packets or CoS
tags to classify packets in different priority queues. CoS does not ensure network
performance or certain priority in delivering packets. See also Quality of Service(QoS).
(Source: http://en.wikipedia.org/wiki/Class_of_service)

COTS: Commercial Off-The-Shelf. A term for systems that are manufactured commercially, and
may be tailored for specific uses. (Source: http://en.wikipedia.org/wiki/Commercial_off-
the-shelf)

coupling: The manner and degree of interdependence between software modules. Types include
common-environment coupling, content coupling, control coupling, data coupling, hybrid

NESI Part 5: Net-Centric Developer's Guide

426

coupling, and pathological coupling. Contrast with cohesion. In a well-designed, highly
modular software design, the coupling between modules will be minimized. This
facilitates changing and replacing modules with minimal effect on other modules within
the system. (Source: IEEE Std 610.12-1990)

CPD: Capabilities Production Document. Addresses the production attributes and quantities
specific to a single increment of an acquisition program. Supersedes threshold and
objective performance values of the CDD. (Source:
http://www.dau.mil/pubs/glossary/11thGlossary 2003.pdf)

CRD: Capstone Requirements Document. A document containing capabilities-based
requirements that facilitates the development of individual Capability Development
Documents (CDDs) by providing a common framework and operational concept to guide
their development. CRDs that have been approved by the Joint Requirements Oversight
Council (JROC) continue to be valid until absorbed into appropriate integrated
architectures as required by CJCSI 3170.01C and retired. The JROC retains the authority
to specifically direct the development of new CRDs, as necessary. The CRD format is
contained in CJCSM 3170.01.(CJCSI 3170.01C and CJCSM 3170.01). (Source:
http://www.dau.mil/pubs/glossary/11th Glossary 2003.pdf)

credentials: The information describing the security attributes of a principal. (Source:
http://java.sun.com/j2ee/1.4/docs/glossary.html)

cross compiler: “A compiler that executes on one computer but generates machine code for a
different computer.” (Source: IEEE Std 610.12-1990)

CSM: Component and Service Management. A set of management capabilities for monitoring
and controlling deployed applications, their components, and web services. CSM collects
data, analyzes it, and makes system management recommendations to operators. CSM
also provides the ability to manage version configuration information and a scheduler to
run batch jobs at a predetermined schedule. Other CSM capabilities include configuration
management, end-to-end performance monitoring and analysis, service desk support,
software distribution, service life-cycle management, and quality-of-service management.

CSS: Cascading Style Sheet. A stylesheet used with HTML and XML documents to add a style
to all elements marked with a particular tag, for the direction of browsers or other
presentation mechanisms. (Source: http://java.sun.com/j2ee/1.4/docs/glossary.html) -OR-
Closed Source Software. Software in which the source code is not open and available,
e.g., COTS (commercial off-the-shelf) software. COTS is usually distributed in a binary
form. With COTS licenses, the purchaser is not allowed to take apart or reverse-engineer
the product, or modify the product for any purpose. Other forms of CSS include
shareware and royalty-free libraries (e.g., runtime libraries for compilers). CSS may
come with source code, but the associated licenses forbid the creation and distribution of
any derived works. (Source: http://en.wikipedia.org/wiki/Closed_source)

customized application: An application that can be tailored on a continuing basis to meet current
Rules of Engagement (ROE) and readjusted to meet tomorrow’s needs.

customized delivery: Smart push-and-pull of data reduces overload and provides the requested
data to operators when they need it. Tailored discovery, publish, and subscribe
capabilities allow operators to register for specific data and services in specific
timeframes.

D

Glossary

427

DAC: Discretionary Access Control. Defines basic access control policies to objects in a file
system. Generally, these are done at the discretion of the object owner: file/directory
permissions and user/group ownership. (Source:
http://en.wikipedia.org/wiki/Discretionary_access_control)

data-centric: Data separated from applications; apps talk to each other by posting data.

data asset: Any entity that involves data.

data exchange: Operators can move data between applications easily and without losing data or
capabilities. Data may carry security labels allowing for its exchange with partners
operating at coalition or multinational releasable security levels.

data modeling: Modeling is an essential step in understanding the data that will comprise a
system. The end products of data modeling can be XML schemas or RDBMS schema
definitions. Many COIs create their own data models, such as C2IEDM for the C2
community.

DBMS: Database Management System. A system, usually automated and computerized, for
managing any collection of compatible, and ideally normalized, data. (Source:
http://en.wikipedia.org/wiki/DBMS)

DCID: Director of Central Intelligence Directive. CIA publications that provide timely,
coordinated, and clear guidance and direction to the Intelligence Community.

DCTS: Defense Collaboration Tool Suite. A flexible, integrated set of applications providing
interoperable, synchronous, and asynchronous collaboration capability to the Department
of Defense’s (DoD) agencies, Combatant Commands, and military services.
(Source:http://www.disa.mil/main/prodsol/dcts.html)

DDMS: DoD Discovery Metadata Specification. A NCES metadata initiative. DDMS defines
discovery metadata elements for resources posted to community and organizational
shared spaces. Sometimes (incorrectly) referred to as DoD Discovery Metadata Standard.
(Source:http://diides.ncr.disa.mil/mdreg/user/DDMS.cfm)

decorrelation: The determination that locally held track data for a given track number does not
represent the same object or point as track data being received in a remote track report for
the same track number.

deployment: The process whereby software is installed into an operational environment.
(Source:http://java.sun.com/j2ee/1.4/docs/glossary.html)

deployment descriptor: An XML file provided with each module and J2EE application that
describes how they should be deployed. The deployment descriptor directs a deployment
tool to deploy a module or application with specific container options and describes
specific configuration requirements that a deployer must resolve. (Source:
http://java.sun.com/j2ee/1.4/docs/glossary.html)

design architecture: An arrangement of design elements that provides the design solution for a
product or life cycle process intended to satisfy the functional architecture and the
requirements baseline. (Source: IEEE 1220)

design requirement: “A requirement that specifies or constrains the design of a system
component.” (Source:IEEE Std 610.12-1990)

DFARS: Defense Federal Acquisition Regulation Supplement

DHTML: Dynamic HTML. Designates a technique of creating interactive web sites by using a
combination of the static markup language HTML, a client-side scripting language such

NESI Part 5: Net-Centric Developer's Guide

428

as JavaScript, and the style definition language Cascading Style Sheets.
(Source:http://en.wikipedia.org/wiki/Dynamic_web_page)

DIACAP: DoD Information Assurance Certification and Accreditation Program

DiffServ: Differentiated Services

DII: Dynamic Invocation Interface

DISA: Defense Information Systems Agency

disconnected application: An application that may not be available at all times. Not all
applications within the enterprise will have a 24/7 connection to the other machines in the
network. For example, consider a submarine that surfaces several times a day to obtain
mission information. A message-base system can store the messages in a queue until the
submarine surfaces. Disconnected applications allow the receiving application to process
messages at any time. As a result, the sender and receiver are not as dependent on each
other.

DISN: Defense Information System Network

DISR: Defense Information Technology Standards & Profiles Registry

distributed application: An application made up of distinct components running in separate
runtime environments, usually on different platforms connected via a network. Typical
distributed applications are two-tier (client-server), three-tier (client-middleware-server),
and multitier (client-multiple middleware-multiple servers). (Source:
http://java.sun.com/j2ee/1.4/docs/glossary.html)

DITSCAP: Defense Information Technology Security Certification and Accreditation Process

DoD: Department of Defense

DoDAF: DoD Architecture Framework

DoDD: Department of Defense Directive

DoDI: Department of Defense Instruction

DoDIIS: Department of Defense Intelligence Information System

DOM: Document Object Model. An API for accessing and manipulating XML documents as tree
structures. DOM provides platform-neutral, language-neutral interfaces that enable
programs and scripts to dynamically access and modify content and structure in XML
documents. (Source: http://java.sun.com/j2ee/1.4/docs/glossary.html)

domain: A group of related items within a certain area of interest.

domain analysis: The process of identifying the types of information that the data model uses. A
good data model captures descriptive information about each of the types.

DON: Department of the Navy

DOS: Data-Oriented Services. A software component that receives a request and optionally
returns an XML data response to a UFS or another DOS. A DOS has no visual or
presentation component.

DOTMLPF: Doctrine, Organization, Training, Materiel, Leadership, Personnel, Facilities

DRR: Design Readiness Review

DSI: Data Source Interface

Glossary

429

DTD: Document Type Definition. An optional part of the XML document prolog, as specified by
the XML standard. The DTD specifies constraints on the tags and tag sequences that can
be in the document. The DTD has a number of shortcomings, however, and this has led to
various schema proposals. For example, the DTD entry <!ELEMENT
username(#PCDATA)> says that the XML element called “username” contains parsed
character data; that is, text alone, with no other structural elements under it. The DTD
includes both the local subset, defined in the current file, and the external subset, which
consists of the definitions contained in external DTD files that are referenced in the local
subset using a parameter entity. (Source: http://java.sun.com/j2ee/1.4/docs/glossary.html)

dual stacking: Incorporating both IPv4 and IPv6 support in routers and computers.

dynamic web page: See DHTML.

E
EAI: Enterprise Application Integration

EAR: Enterprise Application Archive. A JAR archive that contains a J2EE application. It
contains all the JAR, WAR, and RAR archives for an enterprise application, plus an
XML descriptor. (Source: http://java.sun.com/j2ee/1.4/docs/glossary.html)

ebXML: Electronic Business XML. A group of specifications designed to enable enterprises to
conduct business through the exchange of XML-based messages. It is sponsored by
OASIS and the United Nations Centre for the Facilitation of Procedures and Practices in
Administration, Commerce and Transport (U.N./CEFACT). (Source:
http://java.sun.com/j2ee/1.4/docs/glossary.html)

EIP: Enterprise Information Portals. An EIP is an intranet portal, usually under the control of a
single domain such as the DoD. Some of the features of an EIP are single touch point,
collaboration, content and document management, personalization, and integration.
(Source: http://en.wikipedia.org/wiki/web_portal)

EJB: Enterprise Java Bean. A server-side component architecture for the development and
deployment of object-oriented, distributed, enterprise-level applications. Applications
written using the Enterprise JavaBeans architecture are scalable, transactional, and
secure. (Source: http://java.sun.com/j2ee/1.4/docs/glossary.html)

embedded style sheet: A style sheet in the heading of an HTML document. They override linked
style sheets.

end user: A human user of information. This is distinct from those who develop or support the
automated systems that provide the information. -OR- A person who uses a device-
specific user agent to access a web site. (Source: http://www.oasis-
open.org/committees/download.php/3343/oasis-200304-wsrp-specification-1.0.pdf)

endpoint: The URL or location of the web service on the internet.

enterprise: An organization considered as an entity or system that includes interdependent
resources (e.g., people, organizations, and technology) that must coordinate functions and
share information in support of a common mission or a set of related missions.

enterprise guidelines: Rules that govern the choice/implementation of COI Enterprise Services.

enterprise service: A service that provides capabilities to the enterprise. See also Core Enterprise
Service and Community of Interest Service.

NESI Part 5: Net-Centric Developer's Guide

430

entity bean: An enterprise bean that represents persistent data maintained in a database. An
entity bean can manage its own persistence or can delegate this function to its container.
An entity bean is identified by a primary key. If the container in which an entity bean is
hosted crashes, the entity bean, its primary key, and any remote references survive the
crash. (Source: http://java.sun.com/j2ee/1.4/docs/glossary.html)

ESC: Electronic Systems Center

ESM: Enterprise Service Management

Ethernet: A network communication system developed and standardized by DEC, Intel, and
Xerox, using baseband transmission, CSMA/CD access, logical bus topology, and coaxial
cable. The successor IEEE 802.3 standard provides for integration into the OSI model. It
extends the physical layer and media with repeaters and implementations that operate on
fiber, thin coax, and twisted-pair cable. (Source: http://www.sun.com/products-n-
solutions/hardware/docs/html/817-6210-10/glossary.html)

EUC: Extended User Community

event-driven: An application that responds to events.

event-driven application: An application that responds to events. For example, a weather-
reporting application may respond to weather sensor events. Since message-base systems
are inherently asynchronous, synchronization is not an issue for application development.
An application can simply put the message in the queue and not have to wait for a
response. This decoupling allows applications to be more responsive and operate
independently of time constraints.

execution architecture: An execution architecture is created for distributed or concurrent
systems. The process view shows the mapping of components onto the processes of the
physical system. The deployment view shows the mapping of (physical) components in
the executing system onto the nodes of the physical system.

external style sheet: See linked style sheet.

external time source: Synchronizes internal clocks across BF platforms and represents the
source of UTC time for the above system time.

F
façade: Provides a unified interface to a set of interfaces in a subsystem. Façade defines a higher-

level interface that makes the subsystem easier to use. This can simplify a number of
complicated object interactions into a single interface.

FAR: Federal Acquisition Regulation

FCS: Future Combat Systems

feel aspect: One of the traditional aspects of a graphical user interface. The "feel" covers the
behavior of dynamic elements such as buttons, boxes, and menus

FMS: Foreign Military Sales

force: (1) An aggregation of military personnel, weapon systems, vehicles, and necessary
support, or combination thereof. (2) A major subdivision of a fleet.

FORCEnet: An operational construct and architectural framework that integrates the
SEAPOWER21 concepts of Sea Strike, Sea Shield, and Sea Basing by connecting

Glossary

431

warriors; sensors, networks; command and control; platforms and weapons; providing
accelerated speed and accuracy of decision; and integrating knowledge to dominate the
battlespace. FORCEnet provides the following capabilities: expeditionary, multi-tiered,
sensor and weapon grids; distributed, collaborative, command and control; dynamic,
multi-path survivable networks; adaptive/automated decision aids; and human-centric
integration.

foreign key: An attribute in a relation of a database that serves as the primary key of another
relation in the same database.

free software: Free software is software whose license terms do not restrict the users in the ways
that they can run, copy, distribute, study, change, and improve the software. By
definition, free software is open-source. In this definition, “free” refers not to the cost of
acquiring or using the software but rather to how the software can be used. (Source:
GNU.org: http://www.gnu.org/philosophy/free-sw.html)

freeware: The term “freeware'' has no single definition, but is commonly used to refer to
software whose license terms permit redistribution but not modification. Usually, the
source code for freeware is not available. (Source: GNU.org:
http://www.gnu.org/philosophy/categories.html)

FTP: File Transfer Protocol. FTP transfers files to and from a remote network. The protocol
includes the ftp command (local machine) and the in.ftpd daemon (remote machine). FTP
enables a user to specify the name of the remote host and file transfer command options
on the local host's command line. The in.ftpd daemon on the remote host then handles the
requests from the local host. Unlike rcp, ftp works even when the remote computer does
not run a UNIX-based operating system. A user must log in to the remote computer to
make an ftp connection unless it has been set up to allow anonymous FTP. (Source:
http://www.sun.com/products-n-solutions/hardware/docs/html/817-6210-
10/glossary.html)

functional analysis: Examination of a defined function to identify all the subfunctions necessary
to the accomplishment of that function. Identification of functional relationships and
interfaces (internal and external) and the capture of these in a functional architecture. The
flow down of upper-level performance requirements and the assignment of these
requirements to lower-level sub-functions.

functional architecture: An arrangement of functions and their subfunctions and interfaces
(internal and external) that defines the execution sequencing, conditions for control or
data flow, and the performance requirements to satisfy the requirements baseline.
(Source: IEEE 1220)

functional requirements: Specific actions that a system must be able to perform, without taking
physical constraints into consideration. These are often best described in a use-case
model and in use cases. Functional requirements specify the input and output behavior of
a system.

G
GCCS: Global Command and Control System

GCCS-M: Global Command and Control System – Maritime. GCCS-M [AN/USQ-119E(V)],
previously the Joint Maritime Command Information System (JMCIS), is the Navy's
primary fielded Command and Control System. It is a globally interconnected, end-to-
end set of information capabilities, associated processes, and personnel. It collects,

NESI Part 5: Net-Centric Developer's Guide

432

processes, stores, disseminates, and manages information on demand to warfighters,
policy makers, and support personnel. It uses this data to execute the full range of Navy
missions (e.g., strategic deterrence, sea control, power projection, etc.) in near-real-time
via external communication channels, local area networks (LANs), and direct interfaces
with other systems.

GCSS: Global Combat Support System

GIG: Global Information Grid. Globally interconnected, end-to-end set of information
capabilities, associated processes, and personnel for collecting, processing, storing,
disseminating, and managing information on demand to warfighters, policy makers, and
support personnel. The GIG includes all owned and leased communications and
computing systems and services, software (including applications), data, security
services, and other associated services necessary to achieve Information Superiority. It
also includes National Security Systems (NSS) as defined in section 5142 of the Clinger-
Cohen Act of 1996. The GIG supports all DoD, National Security, and related
Intelligence Community (IC) missions and functions (strategic, operational, tactical, and
business) in war and in peace.The GIG provides capabilities from all operating locations
(bases, posts, camps,stations, facilities, mobile platforms, and deployed sites). The GIG
provides interfaces to coalition, allied, and non-DoD users and systems.

GIG-BE: Global Information Grid Bandwidth Expansion

GIG-ES: Global Information Grid Enterprise Services

GIG enterprise service: A service that provides capabilities for use in the DoD enterprise. GIG
Enterprise Services are the combination of Core Enterprise Services and Community of
Interest Services. Also referred to as Global Enterprise Services.

GIOP: General InterORB Protocol

GO-1: Geographic Objects Initiative, Phase 1. Interoperability initiative and specification from
Open GIS Consortium on GIS APIs. (Source: http://ip.opengis.org/go1/)

GOTS: Government Off-The-Shelf

GPL: General Public License. A license that defines a specific set of distribution terms for free
software. A GPL specifically does not let redistributors add any additional restrictions
when they redistribute or modify the software. This means that every copy of the
software, even if it has been modified, must be free software.
(Source:http://www.gnu.org/copyleft/gpl.html)

group: An authenticated set of users classified by common traits such as job title or customer
profile. Groups are also associated with a set of roles, and every user that is a member of
a group inherits all the roles assigned to that group. (Source:
http://java.sun.com/j2ee/1.4/docs/glossary.html) -OR- (1) A flexible administrative and
tactical unit composed of either two or more battalions or two or more squadrons. The
term also applies to combat support and combat service support units. (2) A number of
ships and/or aircraft, normally a subdivision of a force, assigned for a specific purpose.

GUI: Graphical User Interface

H
HAIPE: High Assurance Internet Protocol Encryptor

Glossary

433

hard real-time: A system is said to be hard real-time if the correctness of an operation depends
not only upon the logical correctness of the operation but also upon the time at which it is
performed. An operation performed after the deadline is, by definition, incorrect, and
usually has no value. In a soft real-time system the value of an operation declines steadily
after the deadline expires. (Source: http://en.wikipedia.org/wiki/Real_time)

heterogeneous replication: Data transfer between the same or different RDBMS vendors: for
example, Oracle to Oracle, or Oracle to Sybase to SQL Server to MySQL. Heterogeneous
replication is proprietary to the heterogeneous vendor but reduces the dependency on a
specific RDBMS vendor.

hierarchical database: A hierarchical database defines a set of parent-child relationships. Their
use should be limited to integration of existing databases, such as IBM’s Informational
Management System (IMS). Hierarchical database systems require developers to predict
all possible access patterns in advance and design the database accordingly. A database
access pattern that is not included in the design becomes very difficult and inefficient.

high-order language: “Any programming language that requires little knowledge of the
computer hardware on which a program will run, can be translated into several different
machine languages, allows symbolic naming of operations and addresses, provides
features designed to facilitate expression of data structures and program logic, and
usually results in several machine instructions for each program statement. Examples
include Ada, ALGOL, COBOL, FORTRAN, Pascal.” (Source: IEEE Std 610.13-1993.
IEEE Standard Glossary of Computer Languages)

high availability: Data tier availability can be affected by hardware failure, power outages, data
errors, user errors, programmer errors, OS errors, and RDBMS errors. Various hardware
and software methods help mitigate availability issues. The more reliable a system needs
to be, the more it costs. Consequently, defining availability to meet requirements is
essential to controlling costs.

homogeneous replication: Data transfer between two databases that are implemented using the
same RDBMS provider: for example, between two Sybase or two Oracle RDBMSs.

HTML: Hypertext Markup Language. A markup language for hypertext documents on the
Internet. HTML supports embedding images, sounds, video streams, form fields,
references to other objects with URLs, and basic text formatting. (Source:
http://java.sun.com/j2ee/1.4/docs/glossary.html)

HTTP: Hypertext Transfer Protocol. The Internet protocol used to retrieve hypertext objects
from remote hosts. HTTP messages consist of requests from client to server and
responses from server to client. (Source: http://java.sun.com/j2ee/1.4/docs/glossary.html)

HTTPS: In XML documents, a piece of text that describes a unit of data or an element. The tag is
distinguishable as markup, as opposed to data, because it is surrounded by angle brackets
(< and >). To treat such markup syntax as data, you use an entity reference or a CDATA
section. (Source: http://java.sun.com/j2ee/1.4/docs/glossary.html)

I
IA: Information Assurance. The set of measures taken to protect and defend information and

information systems to ensure confidentiality, integrity, availability, and accountability,
extended to restoration with protect, detect, monitor, and react capabilities.

IABM: Integrated Architecture Behavior Model

NESI Part 5: Net-Centric Developer's Guide

434

IAI: Internet Application Integration

IAS: Information Assurance and Security Measures

IAW: In accordance with

IC: Intelligence Community

ICD: Initial Capabilities Document

ICSF: Integrated C4I System Framework. Defines capability gaps in terms of functional area(s),
relevant range of military ops, time, obstacles to overcome, and key attributes, with
appropriate measures of effectiveness. Recommends materiel approach(es) based on cost
analysis, efficacy, sustainability, environmental quality impacts, and associated risks.

ID: Identification. (1) Identification is the Identity, Category, Platform, Type, Activity, and
Nationality/Alliance of the track. (2) The process of determining the friendly or hostile
character of an unknown detected contact.

IDE: Integrated Development Environment

identity: Identity refers to the nature or attributes of the track: Friend, Assumed Friend, Neutral,
Unknown, Pending, Suspect, or Hostile.

IDL: Interface Definition Language. A language used to define interfaces to remote CORBA
objects. The interfaces are independent of operating systems and programming
languages. (Source: http://java.sun.com/j2ee/1.4/docs/glossary.html)

IEC: International Engineering Consortium

IEEE: International Electrical and Electronics Engineers

IETF: Internet Engineering Task Force

IFR: Interface Repository

IIOP: Internet InterORB Protocol. A protocol used for communication between CORBA object
request brokers. (Source: http://java.sun.com/j2ee/1.4/docs/glossary.html)

IIS: Internet Information Services. A set of Internet-based services for Windows machines.
Originally supplied as part of the Option Pack for Windows NT, they were subsequently
integrated with Windows 2000 and Windows Server 2003. The current (Windows 2003)
version is IIS 6.0 and includes servers for FTP, SMTP, NNTP and HTTP/HTTPS. Earlier
versions also included a Gopher server.

implementation requirement: “A requirement that specifies or constrains the coding or
construction of a system or system component.” See also requirements. (Source: IEEE
Std 610.12-1990)

incremental upgrade: Certain capabilities can be modernized without impacting other
capabilities.

INE: Inline Network Encryptor

inline style sheet: A style sheet in an individual HTML tag. It overrides linked and embedded
style sheets.

integration: Integration is the action or process of combining elements so that they become a
whole. Vertical integration acts within a system, whereas horizontal integration acts
between or among systems. In the net-centric environment, integration creates links
between computer systems, applications, services, or processes.The word is normally

Glossary

435

used in the context of computing, but can apply to business processes as much as to the
underlying process automation. In the past, computer integration such as enterprise
application integration (EAI) has typically been tightly coupled, or “hard wired,” making
it difficult to adapt to changing requirements. Thanks to the advent of web services and
the evolution of service-oriented architectures, more agile, loosely coupled forms of
integration are starting to emerge.

INTEL-generated track: Track based on INTEL data that is of sufficient quality for
correlation/association with a system track.

intellectual property : The products resulting from intellectual effort and
covered by a set of laws governing use of these products. These laws cover patents,
copyrights, and trade secrets, and are conveyed by specific license terms and conditions
describing allowable use. See also software licenses, software patents, copyrights.

interface: The functional and physical characteristics required to exist at a common boundary or
connection between systems or items. (Source: DoD 4120.214-M)

interface requirement: “A requirement that specifies an external item with which a system or
system component must interact, or that sets forth constraints on formats, timing, or other
factors caused by such an interaction.” (Source: IEEE Std 610.12-1990)

interface standard: A standard that specifies the physical, functional, and operational
relationships between various hardware and software elements to permit
interchangeability, interconnection, compatibility and/or communications.

Internet: The Internet, or simply the Net, is the publicly available worldwide system of
interconnectedcomputer networks that transmit data by packet switching using a
standardized InternetProtocol (IP) and many other protocols. It is made up of thousands
of smaller commercial,academic, and government networks. It carries various
information and services, suchas electronic mail, online chat and the interlinked web
pages and other documentsof the World Wide web. Because this is by far the largest,
most extensive internet(with a small i) in the world, it is simply called the Internet (with a
capital I). (Source: http://en.wikipedia.org/wiki/Internet)

interoperability: The ability of systems, units, or forces to (1) provide data, information,
materiel, and services to, and accept the same from, other systems, units, or forces, and
(2) to use the data, information, materiel, and services so exchanged to enable them to
operate effectively together. IT and NSS interoperability includes both the technical
exchange of information and the end-to-end operational effectiveness of that exchange of
information as required for mission accomplishment. Interoperability is more than just
information exchange. It includes systems, processes, procedures, organizations, and
missions over the life cycle and must be balanced with information assurance. -OR- The
ability for entities to work with each other. In the loosely coupled environment of a
service-oriented architecture, separate resources don't need to know the details of how
they each work, but they need to have enough common ground to reliably exchange
messages without error or misunderstanding. Standardized specifications go a long way
towards creating this common ground, but differences in implementation may still cause
breakdowns in communication. Interoperability is when services can interact with each
other without encountering such problems.

intranet: An intranet is a local area network (LAN) used internally in an organization to
facilitatecommunication and access to information that is sometimes access-restricted.
Sometimesthe term refers only to the most visible service, the internal web site. The same
concepts and technologies of the Internet such as clients and servers running on the

NESI Part 5: Net-Centric Developer's Guide

436

Internet protocol suite are used to build an intranet. HTTP and other internet protocols are
commonly used as well, especially FTP and email. There is often an attempt to use
internet technologies to provide new interfaces with corporate "legacy" data and
information systems. (Source: http://en.wikipedia.org/wiki/Intranet)

IP: Internet Protocol. Data packets routed across network, not switched via dedicated circuits.

IPv4: Internet Protocol Version 4. Version 4 of the Internet Protocol (IP). It was the first version
of the Internet Protocol to be widely deployed, and forms the basis for most of the current
Internet (as of 2004). It is described in IETF RFC 791, which was first published in
September, 1981. IPv4 uses 32-bit addresses, limiting it to 4,294,967,296 unique
addresses, many of which are reserved for special purposes such as local networks or
multicast addresses. This reduces the number of addresses that can be allocated as public
Internet addresses. As the number of addresses available is consumed, an IPv4 address
shortage appears to be inevitable in the long run. This limitation has helped stimulate the
push towards IPv6, which is currently in the early stages of deployment, and may
eventually replace IPv4. (Source: http://en.wikipedia.org/wiki/IPv4)

IPv6: Internet Protocol Version 6. Version 6 of the Internet Protocol; it was initially called IP
Next Generation (IPng) when it was picked as the winner in the IETF's IPng selection
process. IPv6 is intended to replace the previous standard, IPv4, which only supports up
to about 4 billion (4 × 109) addresses. IPv6 supports up to about 3.4 × 1038 (340
undecillion) addresses. This is the equivalent of 4.3 × 1020 (430 quintillion) addresses
per square inch (6.7 × 1017 (670 quadrillion) addresses/mm²)of the Earth's surface. It is
expected that IPv4 will be supported until at least 2025, to allow time for bugs and
system errors to be corrected. (Source: http://en.wikipedia.org/wiki/Ipv6)

ISO: International Standards Organization

ISP: Integrated Support Plans. Describes system dependencies and interface requirements.
Includes system interface descriptions, infrastructure and support requirements, standards
profiles, performance measures, and interoperability issues.

ISR: Intelligence, Surveillance, and Reconnaissance

IT: Information Technology

ITIL: Information Technology Infrastructure Library

ITSM: IT Service Management

ITU: International Telecommunication Union

J
J2A: Java Connector Architecture

J2EE: Java 2 Enterprise Edition. The J2EE environment is the standard for developing
component-based multi-tier enterprise applications. The J2EE platform consists of a set
of services, application programming interfaces (APIs), and protocols that provide the
functionality for developing multitiered, web-based applications. Features include web-
services support and development tools.(Source:
http://java.sun.com/j2ee/1.4/docs/glossary.html)

J2EE application: Any deployable unit of J2EE functionality. This can be a single J2EE module
or a group of modules packaged into an EAR file along with a J2EE application

Glossary

437

deployment descriptor. J2EE applications are typically engineered to be distributed
across multiple computing tiers. (Source: http://java.sun.com/j2ee/1.4/docs/glossary.html)

J2EE component: A self-contained functional software unit that is supported by a container and
is configurable at deployment time. The J2EE specification defines the following J2EE
components. (1) Application clients and applets are components that run on the client. (2)
Java servlet and JavaServer Pages (JSP) technology components, web components that
run on the server. (3) Enterprise JavaBeans (EJB) components (enterprise beans),
business components that run on the server. J2EE components are written in the Java
programming language and are compiled in the same way as any program in the
language. The difference between J2EE components and “standard” Java classes is that
J2EE components are assembled into a J2EE application, verified to be well formed and
in compliance with the J2EE specification, and deployed to production, where they are
run and managed by the J2EE server or client container. (Source:
http://java.sun.com/j2ee/1.4/docs/glossary.html)

J2EE module: A software unit that consists of one or more J2EE components of the same
container type and one deployment descriptor of that type. There are four types of
modules: EJB, web, application client, and resource adapter. Modules can be deployed as
standalone units or can be assembled into a J2EE application. (Source:
http://java.sun.com/j2ee/1.4/docs/glossary.html)

J2EE server: The runtime portion of a J2EE product. A J2EE server provides EJB or web
containers or both. (Source: http://java.sun.com/j2ee/1.4/docs/glossary.html)

JAAS: Java Authentication and Authorization Service

JAD: Joint Application Development

JAR: Java Archive. A platform-independent file format that enables you to bundle multiple files
into a single archive file. JAR files are packaged with the ZIP file format, so you can use
them for ZIP-like tasks such as lossless data compression, archiving, decompression, and
archive unpacking. Typically JAR files contain the class files and auxiliary resources
associated with applets and applications. (Source:
http://java.sun.com/j2ee/1.4/docs/glossary.html)

Java Server Faces: A framework for building user interfaces for web applications. It includes (1)
A set of APIs for representing UI components and managing their state, handling events
and input validation, defining page navigation, and supporting internationalization and
accessibility; (2) A JavaServer Pages (JSP) custom tag library for expressing a
JavaServer Faces interface within a JSP page.

JavaBean: A specification developed by Sun Microsystems that defines how Java objects
interact and is similar to an ActiveX control. It can be used by any application that
understands the JavaBean format.

JavaMail: A platform- and protocol-independent framework for building Java-based mail client
applications.

JavaScript: The Netscape-developed object scripting language used in millions of web pages and
server applications worldwide. Contrary to popular misconception, JavaScript is not
"Interpretive Java." Rather, it is a dynamic scripting language that supports prototype-
based object construction.

JC2: Joint Command and Control

JCA: J2EE Connector Architecture -OR- Java Cryptography Architecture

NESI Part 5: Net-Centric Developer's Guide

438

JCIDS: Joint Capabilities Integration and Development System

JDBC: Java Database Connection. An API that supports database and data-source access from
Java applications.

JDK: Java Development Kits

JEDI: Joint Enterprise DoDIIS Infrastructure

JFC: Joint Forces Commander

JIC: Joint Intelligence Center

JMS: Java Message Service. An API for invoking operations on enterprise messaging systems.
(Source: http://java.sun.com/j2ee/1.4/docs/glossary.html)

JMS client: A Java-base application or object that produces and consumes messages, where
messages are objects that contain the data being transferred between JMS clients.

JMS connection class: Once a connection factory is obtained, a connection to a JMS provider
(MOM) can be created. A connection represents a communication link between the
application and the messaging server. Depending on the connection type, connections
allow users to create sessions for sending and receiving messages from a queue or topic.

JMS connection factory class: An administered object that a client uses to create a connection to
the JMS provider (MOM). JMS clients access the connection factory through portable
interfaces so the code does not need to be changed if the underlying implementation
(MOM) changes. Administrators configure the connection factory in the Java Naming
and Directory Interface (JNDI) namespace so that JMS clients can look them up.
Depending on the type of message, users will use either a queue connection factory or
topic connection factory.

JMS destination class: An administered object that encapsulates the identity of a message
destination, which is where messages are delivered and consumed. It is either a queue or
a topic. The JMS administrator creates these objects, and users discover them using
JNDI. Like the connection factory, the administrator can create two types of destinations:
queues for Point-to-Point and topics for Publish/Subscribe.

JMS message consumer class: An object created by a session. It receives messages sent to a
destination. The consumer can receive messages synchronously (blocking) or
asynchronously (non-blocking) for both queue and topic-type messaging.

JMS message producer class: An object created by a session that sends messages to a
destination. The user can create a sender to a specific destination or create a generic
sender that specifies the destination at the time the message is sent.

JMS messages: Objects that contain the data being transferred between JMS clients. Java base
applications or objects that produce and consume messages, where messages are objects
that contain the data being transferred between JMS clients.

JMS messages class: An object that is sent between consumers and producers; that is, from one
application to another. A message has three main parts: (1) A message header (required):
Contains operational settings to identify and route messages; (2) A set of message
properties (optional): Contains additional properties to support compatibility with other
providers or users. It can be used to create custom fields or filters (selectors). (3) A
message body (optional): Allows users to create five types of messages (text message,
map message, bytes message, stream message, and object message). The message

Glossary

439

interface is extremely flexible and provides numerous ways to customize the contents of
a message.

JMS provider: Represents a JMS interface to the MOM. It implements the JMS interface, which
is a specification published by Sun. It is basically an adapter to the MOM.

JMS session class: Represents a single-threaded context for sending and receiving messages. A
session is single-threaded so that messages are serialized, meaning that messages are
received one-by-one in the order sent. The benefit of a session is that it supports
transactions. If the user selects transaction support, the session context holds a group of
messages until the transaction is committed, then delivers the messages. Before
committing the transaction, the user can cancel the messages using a rollback operation.
A session allows users to create message producers to send messages, and message
consumers to receive messages.

JMS/AMI: Java Message Service / Application Messaging Interface

JNDI: Java Naming and Directory Interface. An API that provides naming and directory
functionality. (Source: http://java.sun.com/j2ee/1.4/docs/glossary.html)

joint: Connotes activities, operations, organizations, etc., in which elements of two or more
military departments participate.

joint composite tracking network (JCTN): Generic title for a joint telecommunications
network and processing capability to enable composite tracking among joint,
heterogeneous mixes of sensors and to support appropriate levels of cooperative
engagement of targets by weapons systems. It is envisioned as a real-time, sensor fusion
system that distributes and fuses sensor measurement data into composite tracks that
create a high-fidelity, coherent air picture. The JCTN is a concept rooted in the Navy’s
experience with Cooperative Engagement Capability (CEC). It includes common
software and a communications element that allow participating units to share fused
sensor data. The communications structure as currently envisioned includes wide-band
line-of-sight communications, satellite links, and other communication systems.

joint data network (JDN): A collection of near-real-time communications and information
systems used primarily at the coordination and execution level. It provides information
exchange necessary to facilitate the Joint/Service Battle Manager’s comprehension of the
tactical situation, and also provides the means to exercise command and control beyond
the range of organic sensors. The JDN carries near-real-time tracks, unit status
information, engagement status and coordination data, and force orders. JDN information
is used to cue radars as well. The backbone of the JDN is Link-16. However, other data
links such as TADILA/B/C, Link-22, and VMF (Variable Message Format) will
exchange information with the JDN through gateways at various platforms to ensure that
disadvantaged users are included in the JDN. Satellites link geographically dispersed
users in near real-time without consuming limited tactical bandwidth.

joint force: A general term applied to a force composed of significant elements, assigned or
attached, of two or more military departments operating under a single joint force
commander.

joint planning network (JPN): A collection of non-real-time and near real-time communication
and information systems. JPN provides distributed collaborative planning capability,
automated decision aids, and a means for distributing plans within theater. The core of
the JPN is the GlobalCommand and Control System (GCCS) operating in the Defense
Information Infrastructure Common Operating Environment (DII COE).

NESI Part 5: Net-Centric Developer's Guide

440

joint task force: A joint force that is constituted and so designated by the Secretary of Defense, a
combatant commander, a sub-unified commander, or an existing joint task force
commander.

JPO: Joint Program Office

JScript: Microsoft’s extended implementation of ECMAScript (ECMA262), an international
standard based on Netscape's JavaScript and Microsoft's JScript languages. JScript is
implemented as a Windows Script engine. This means that you can plug it in to any
application that supports Windows Script, such as Internet Explorer, Active Server Pages,
and Windows Script Host. It also means that any application supporting Windows Script
can use multiple languages: JScript, VBScript, Perl, and others.

JSP: Java Server Page. An extensible web technology that uses static data, JSP elements, and
server-side Java objects to generate dynamic content for a client. Typically the static data
is HTML or XML elements, and in many cases the client is a web browser. (Source:
http://java.sun.com/j2ee/1.4/docs/glossary.html)

JSP page: A text-based document containing static text and JSP elements that describes how to
process a request to create a response. A JSP page is translated into and handles requests
as a servlet. (Source: http://java.sun.com/j2ee/1.4/docs/glossary.html)

JSR: Java Specification Request

JSR 168: JSR 168: Portlet Specification. To enable interoperability between portlets and portals,
this specification defines a set of APIs for portal computing that address the areas of
aggregation, personalization, presentation, and security. (Source:
http://www.jcp.org/en/jsr/detail?id=168)

JSSE: Java Secure Socket Extension. A set of packages that enables secure Internet
communications. (Source: http://java.sun.com/j2ee/1.4/docs/glossary.html)

JTA: Java Transaction API. JTA specifies standard Java interfaces between a transaction
manager and the parties involved in a distributed transaction system: the resource
manager, the application server, and the transactional applications.

JTAR: Joint Tactical Air Request

JTRS: Joint Tactical Radio System

Just-In-Time (JIT) compilation: This is the primary method by which .NET executes MSIL. As
the MSIL is executed, the code is compiled and optimized for the executing environment.
JIT compilation provides environment optimization, runtime type safety, and assembly
verification. To accomplish this, the JIT compiler examines the assembly metadata for
any illegal accesses and handles violations appropriately.

JVM: Java Virtual Machine

JWC: A modular, loosely coupled, web-enabled, distributed, N-tier, service-oriented architecture
written in Java, JavaScript, and HTML. It is platform-independent and designed to work
in a heterogeneous environment.

K
keystore: A file containing the keys and certificates used for authentication. (Source:

http://java.sun.com/j2ee/1.4/docs/glossary.html)

kinematics: Position, Velocity, and Acceleration.

Glossary

441

KIP: Key Interface Profile

KPP: Key Performance Parameter

L
LAN: Local Area Network. A group of interconnected computer and support devices.

(Source:http://www.sun.com/products-n-solutions/hardware/docs/html/817-6210-
10/glossary.html)

layered software architecture: Application software is separated into n tiers that separate
concerns; minimally, client, presentation, middle, and data tiers

LDAP: Light Directory Access Protocol. A set of protocols for accessing information directories.
LDAP is a simpler version of the X.500 standard. Unlike X.500, LDAP supports TCP/IP,
which is necessary for Internet access. Because it's a simpler version of X.500, LDAP is
sometimes called X.500-lite.

least-common-denominator data access mechanism: When one application is able to obtain
data provided by another by removing arbitrary implementation barriers to data
exchange.

linked style sheet: A style sheet in a separate text file that is saved in the root with a css file
extension. The head section of the document contains a link to the file.

logical architecture: The logical architecture adds precision, providing a detailed “blueprint”
from which component developers and component users can work in relative
independence. It incorporates the detailed architecture diagram (with interfaces),
component and interface specifications, and component collaboration diagrams, along
with discussion of mechanisms, rationale, etc.

look and feel: Design aspects of a graphical user interface. It covers colors, shapes, layout,
typefaces, and so on (the "look"); and, the behavior of dynamic elements such as buttons,
boxes, and menus (the "feel"). It is used in reference to software and web sites. (Source:
http://en.wikipedia.org/wiki/Look_and_feel)

look aspect: One of the traditional aspects of a graphical user interface. The "look" covers such
things as colors, shapes, layout, and typefaces.

loosely coupled: A computing model where application elements require a simple level of
coordination and allow for flexible reconfiguration. Interconnection is often
asynchronous and message-based.

M
MAIS: Major Automated Information System

manual track: A track that is entered and updated by an operator. It may represent an object not
seen by current sensors or provide a different representation of an entity than is currently
being depicted by the sensors. In addition to system track correlation, the operator has the
ability to associate or correlate this track with other tracks.

MCP: Mission Capability Package

MDA: Milestone Decision Authority

NESI Part 5: Net-Centric Developer's Guide

442

MDD: Model Driven Development. A general class of software development processes and
techniques that emphasizes the use of models as a key element in the development.
MDA™ is an example of one approach to MDD.

MEA: Multi-Element Array

measurement: A sensor-derived detection, contact, hit, or observation at a given point in time.

measurement report: A detection from a single sensor which has not yet been subjected to an
association process.

message bean: An enterprise bean that provides asynchronous message support and clearly
separates message and business processing.

MHTML: Mime HTML

MIME: Multi-purpose Internet Mail Extensions

mission: The task, together with the purpose, that clearly indicates the action to be taken and the
reason for that action.

mission-essential task (MET): A task selected by a force commander from the Universal Navy
Task List (UNTL) deemed essential to mission accomplishment.

mission-essential task list (METL): A list of tasks considered essential to the accomplishment
of assigned or anticipated missions. A METL includes associated conditions and
standards and may identify command-linked and supporting tasks.

MLPP: Multi-Level Priority and Preemption

MMU: Memory Management Unit

model-driven architecture (MDA™): Model-driven architecture™ is a trademarked term
denoting a specific approach to the development of software using models as the basis.
The MDA™ specifies system functionality separately from the implementation of that
functionality on a specific technology platform. To accomplish this goal, the MDA™
defines an architecture that provides a set of guidelines for structuring specifications
expressed as models.The MDA™ model architecture relates multiple standards, including
Unified Modeling Language™ (UML™), the Meta Object Facility™ (MOF™), the XML
Metadata interchange(XMI™), and the Common Warehouse Metamodel (CWM™).
Note that the term “architecture” in MM does not refer to the architecture of the system
being modeled, but rather to the architecture of the various standards and model forms
that serve as the technology basis for MDA™.

Model 4: TADIL A Taxonomy (Link-11)

Model 5: TADIL J Taxonomy (Link-16)

modular design: Characterized by (1) Functional partitioning into discrete scalable, reusable
modules consisting of isolated, self-contained functional elements; (2) Rigorous use of
welldefined modular interfaces, including object-oriented descriptions of module
functionality; (3) Ease of change to achieve technology transparency and, to the extent
possible, make use of industry standards for key interfaces.

module: “(1) A program unit that is discrete and identifiable with respect to compiling,
combining with other units, and loading; for example, the input to, or output from, an
assembler, compiler, linkage editor, or executive routine. (2) A logically separable part of
a program. Note: The terms ‘module,’ ‘component,’ and ‘unit’ are often used
interchangeably or defined to be sub-elements of one another in different ways depending

Glossary

443

upon the context. The relationship of these terms is not yet standardized.” See also
component. (Source: IEEE Std 610.12-1990)

MOJE: Map Objects Java Edition

MOM: Message-Oriented Middleware

MOP: Maintenance Operation Protocol

MOSA: Modular Open Systems Approach

multi-sensor correlated track: A representation of an entity that is formed by correlating track
reports using various methods based upon time latency of the given tracks. These
multiple tracks are correlated to form one representation of the track.

multi-user access: A system where multiple users can simultaneously access data stores, use
applications, and analyze and direct operations.

mutual authentication: An authentication mechanism employed by two parties for the purpose
of proving each other's identity to one another. (Source:
http://java.sun.com/j2ee/1.4/docs/glossary.html)

N
namespace: A standard that lets you specify a unique label for the set of element names defined

by a DTD or XSD. A document using that DTD or XSD can be included in any other
document without causing a conflict between element names. The elements defined in a
particular DTD are uniquely identified so that, for example, the parser can tell when an
element <name> should be interpreted according to the particular DTD rather than using
the definition for an element <name> in a different DTD. (Source:
http://java.sun.com/j2ee/1.4/docs/glossary.html)

NAS: Network Attached Storage

native XML database: Defines a logical model for an XML document (as opposed to the data in
that document) and stores and retrieves documents according to that model. These
databases are accessed via programming interfaces such as SAX, DOM, or JDOM. There
is a trend away from pure XML storage because all the leading relational database
vendors are introducing advanced XML capabilities.

Navy Tactical Task List (NTTL): The comprehensive list of Navy and Coast Guard (DoD-
related missions) tasks at the tactical level of war.

NCES: Net-Centric Enterprise Services. The NCES program provides enterprise-level
Information Technology (IT) services and infrastructure components, also called Core
Enterprise Services, for the Department of Defense (DoD) Global Information Grid
(GIG).

NCOIC: Network Centric Operations Industry Consortium

NCOW: Net-Centric Operations Warfare

NCOW RM: Net-Centric Operations Warfare Reference Model. An information-enabled concept
of operations that generates increased combat power by networking sensors, decision
makers, and shooters. This enables shared awareness, increased speed of command,
higher tempo of operations, greater lethality, increased survivability, and a degree of self-
synchronization. In essence, network-centric warfare translates information superiority
into combat power by effectively linking knowledgeable entities in the battlespace.

NESI Part 5: Net-Centric Developer's Guide

444

NCW: Net-Centric Warfare

near-real-time (Tracks): (1) Near-real-time tracks are generated by real-time sensors on remote
units, whose delivery latencies are sufficiently large that while they can be used to help
decide to engage on the target, they cannot be used to fire on the target. The data is
primarily used for situational awareness. (2) The timelines of the data or information
have been delayed by the time required for electronic communications and automatic data
processing. (Source: 7P1 SS)

NESI: Net-Centric Enterprise Solutions for Interoperability. A joint effort between the U.S.
Navy’s Program Executive Office for C4I & Space and the U.S. Air Force’s Electronic
Systems Center. It provides a reference architecture, implementation guidance, and a set
of reusable software components. These facilitate the design, development, maintenance,
evolution, and use of information systems for the Net-Centric Operations and Warfare
(NCOW) environment.

net: A globally interconnected, end-to-end set of information capabilities, associated processes,
and personnel for data and information exchange.

net-centric: A net-centric environment is one in which users and local applications depend upon
common services for functionality and data. Users can access applications and data
through web services. This provides an information environment that comprises
interoperable computing and communication components. A net-centric environment
exploits advancing technology to move from an application-centric to a data-centric
paradigm.

net-centric information environment: A net-centric information environment uses emerging
standards and technologies to optimize assured information sharing among users. It
results from implementing GIG component architectures in accordance with the NCOW
RM. A net-centric information environment includes core and COI enterprise services,
and a data-sharing strategy that emphasizes metadata concepts, shared information
spaces, and the TPPU paradigm.

net-centricity: The realization of a robust, globally interconnected, network environment
(including infrastructure, systems, processes, people) in which data is shared seamlessly
in a timely manner among users, applications, and platforms. By securely interconnecting
people and systems, independent of time or location, net-centricity substantially improves
military situational awareness and significantly shortens decision-making cycles. Users
can better protect assets; exploit information more effectively; use resources more
efficiently; and unify our forces by supporting extended, collaborative communities to
focus on the mission.

NETOPS: Network Operations. An organizational, procedural, and technological construct for
ensuring information and decision superiority at the strategic, operational, and tactical
levels of warfare as well as within DoD business operations. NetOps is an operational
approach, which addresses the interdependency and integration of IA/CND, S&NM, and
CS capabilities. NetOps consists of the organizations, tactics, techniques, procedures,
functionalities, and technologies required to plan, administer, and monitor use of the GIG
infrastructure and the end-to-end information flows of the GIG; and to respond to threats,
outages, and other operational impact. NetOps ensures mission requirements are properly
considered in GIG operational decision-making. NetOps enables the GIG to provide its
users with information they need, when and where they need it, with appropriate
protection. NetOps is essential for successful execution of net-centric warfare and other
net-centric operations in support of national security objectives.

Glossary

445

network: A system of computers, terminals, databases, cables, satellites, and other elements that
enable digital communications.

NGEN compilation: Native Image Generator compilation. NGEN enables you to produce a
native binary image of MSIL code for the current environment. This improves the
performance of the .NET application by eliminating the JIT overhead associated with the
execution. Once you run NGEN against an assembly, the resulting native image is placed
in the Global Assembly Cache for use by all other .NET assemblies.

niche database: Created in response to shortcomings in relational databases. Market domination
by large vendors has made it hard for small vendors to break into the market, so niche
database vendors mainly provide supporting tools.

NIS: Node Information Services

NMCI: Navy Marine Corps Intranet

node: A set of information systems acquired and managed as a single element in the net-centric
enterprise. In NESI, these entities are designed to support distributed services for a
collection of systems, applications, data, and components that share a common set of
mission functions on a common infrastructure.

node manager: The organization responsible for integrated planning, acquisition, and delivery of
integrated, tested, certified C2 Node systems, sub-systems, components, and services.

node platform infrastructure: A set of information systems and technologies, based on a
commercial product stack, that provides an integrated common software component
execution framework and infrastructure.

non-functional requirements: Address issues such as reliability, performance, supportability,
constraints, and physical matters. Many requirements are non-functional, and describe
only attributes of the system or attributes of the system environment. Although some of
these may be captured in use cases, those that cannot may be specified in supplementary
specifications.

non-real time (Tracks): (1) Non-real-time tracks have latencies that nominally range from 15
seconds to days. (2) The timelines of the data or information have been delayed such that
the data or information has questionable utility beyond situational awareness. (Source:
7P1SS)

normalization: Normalization avoids duplication of data, insert anomalies, delete anomalies, and
update anomalies. A relation is in first normal form (1NF) if and only if all underlying
simple domains contain atomic values only. A relation is in second normal form (2NF) if
and only if it is in 1NF and every non-keyattribute is fully dependent on the primary key.
A relation is in third normal form (3NF) if and only if it is in 2NF and every non-key
attribute is non-transitively dependent on the primary key. Data models should follow the
three forms unless there is overriding justification not to. (Source:
http://java.sun.com/j2ee/1.4/docs/glossary.html)

NPI: Node Platform Infrastructure

NR KPP: Net-Ready Key Performance Parameter. Measures the net-centricity of a new program
or major upgrade.

O

NESI Part 5: Net-Centric Developer's Guide

446

OASIS: Organization for the Advancement of Structured Information Standards. A nonprofit,
international consortium that promotes the adoption of product-independent standards for
information formats such as SGML, XML, and HTML. Its web site is http://www.oasis-
open.org/. The DTD repository it sponsors is at http://www.XML.org. (Source:
http://java.sun.com/j2ee/1.4/docs/glossary.html)

object-based design: Any design that incorporates objects. Contrast with object-oriented design
and class-based design.

object-based programming language: A programming language that provides the ability for the
programmer to define and use objects; for example, Ada 83.

object-oriented databases (OODBMS): Object-oriented databases are based on the object
model, and use the same conceptual models as object-oriented analysis and design. Since
OODBMSs have portability issues, only a limited number of people and outside
resources support them.

object-oriented design: Any design that incorporates objects, classes, and inheritance. Contrast
with object-based design and class-based design.

object-oriented programming language: A programming language that enables programmers to
define and use objects, classes, and inheritance; for example, C++, Ada 95.

object type: During the Object-Oriented (OO) boom there was a push for all programming
efforts to completely support the OO paradigm. Many of the DBMS vendors responded
by providing support for User-Defined Types (UDT) and Objects.

OBV: Objects by Value

ODBC: Open Database Connectivity

OGC: Open Geospatial Consortium, Inc. Data posted by authoritative sources and visible,
available, and usable to accelerate decision making. (Source:
http://www.opengeospatial.org/)

OHIO: Only Handle Information Once

OLA: Operational Level Agreements

OMG: Object Management Group. A open-membership, not-for-profit consortium that produces
and maintains computer industry specifications for interoperable enterprise applications.
Its web site is http://www.omg.org/. (Source:
http://java.sun.com/j2ee/1.4/docs/glossary.html)

OO: Object Oriented

open-systems approach: An integrated business and technical strategy that employs a modular
design and, where appropriate, defines key interfaces using widely supported, consensus-
based standards that are published and maintained by a recognized industry-standards
organization.

open architecture: An architecture that supports public access to some of its parts. An open
architecture is the design of an open system. It also refers to a set of design patterns and
principles by which open systems are developed. An architecture that employs open
standards for key interfaces within a system.

open source: Generically, “open source” refers to a program in which the source code is
available to the general public for use and/or modification from its original design free of
charge. Open-source code is typically created as a collaborative effort in which

Glossary

447

programmers improve upon the code and share the changes within the community. Open
source sprouted in the technological community as a response to proprietary software
owned by corporations.

open standards: Standards that are widely used, consensus-based, published, and maintained by
recognized industry-standards organizations.

open system: “An open system is a collection of interacting software, hardware, and human
components designed to satisfy stated needs, with interface specifications of its
components that are fully defined, available to the public, and maintained according to
group consensus. In the collection, the implementations of the components conform to
the interface specifications.” (SEI)

ORB: Object Request Broker. A library that enables CORBA objects to locate and communicate
with one another. (Source: http://java.sun.com/j2ee/1.4/docs/glossary.html)

OS file system: Stores and retrieves data, acting as a data tier. Advocates cite performance and
simplicity, but the loss of DBMS-inherent capabilities such as ad-hoc queries and the
ability to upgrade to faster machines is a deterrent. File-system-based data tiers often
result in proprietary solutions that are hardto maintain and port.

OSI: Open Systems Interconnect

OSJTF: Open Systems Joint Task Force

OSS: Open Source Software. (References: Scott Hissam, Charles B. Weinstock, Daniel Plakosh,
Jayatirtha Asundi Perspectives on Open Source Software. November 2001. Technical
Report CMU/SEI-2001-TR-019.) “The term open source software at the most basic level
simply means software for which the source code is open and available. Open and
available is meant to convey two concepts: Open—The source code for the software can
be read (seen) and written (modified). Further, this term is meant to promote the creation
and distribution of derivative works of the software. Available—The source code can be
acquired either free of charge or for a nominal fee (e.g., media and shipping charges or
online connection charges).”

OTN: Oracle Technology Network

OUSD: Office of the Under Secretary of Defense

OWS: OGC Web Services

P
Pacq: Probability of Acquisition

parser: A module that reads in XML data from an input source and breaks it into chunks so that
your program knows when it is working with a tag, an attribute, or element data. A
nonvalidating parser ensures that the XML data is well formed but does not verify that it
is valid. See also validating parser. (Source:
http://java.sun.com/j2ee/1.4/docs/glossary.html)

PART: Program Assessment Rating Tool

PCP: Program Change Proposals

PDA: Personal Digital Assistant

PEO: Program Executive Office

NESI Part 5: Net-Centric Developer's Guide

448

performance requirement: “A requirement that imposes conditions on a functional requirement;
for example, a requirement that specifies the speed, accuracy, or memory usage with
which a given function must be performed.” (Source: IEEE Std 610.12-1990)

personalization: The ability for portal members to subscribe to specific types of content and
services. Users can customize the look and feel of their environment.

physical model: Translates the conceptual model to a particular RDBMS implementation.

PKI: Public Key Infrastructure

POA: Portable Object Adapter. A CORBA standard for building server-side applications that are
portable across heterogeneous ORBs. (Source:
http://java.sun.com/j2ee/1.4/docs/glossary.html)

point-to-point messaging system: A messaging system built on the concept of message queues.
Each message is addressed to a specific queue. Clients extract messages from the queues
established to hold their messages. These messages are normally persistent and a client
can retrieve messages at any time, similar to email. (Source:
http://java.sun.com/j2ee/1.4/docs/glossary.html)

pop-up window: A window that suddenly appears (pops up) when you select an option with a
mouse or press a special function key. Usually, the pop-up window contains a menu of
commands and stays on the screen only until you select one of the commands. Also, a
type of window that appears over the browser window of a web site when visited by a
user. Pop-up windows are used extensively in advertising on the web, though advertising
is not the only application for pop-up windows. Turn theseoff when using UNCG / DCL
online courses. A special kind of pop-up window is a pull-down menu, which appears
just below the item you selected, as if you had pulled it down.(Source:
http://web.uncg.edu/dcl/icampus/access/glossary.asp)

POR: Program of Record

portability: “The ease with which a system or component can be transferred from hardware or
software environment to another.” (Source: IEEE Std 610.12-1990) The level of software
portability of any specific product depends on two factors: the design of the product
itself, and the characteristics of the source and target execution environments. Software
products are rarely if ever 100% portable. Generally, the level of portability depends on
the target platform. Software that is highly portable to one class of platform might be not
portable to other classes.

portal: A web portal is a web site that provides a starting point, gateway, or portal to other
resources on the Internet or an intranet. Intranet portals are also known as "enterprise
information portals" (EIP). Examples of existing portals are Yahoo, Excite, Lycos,
Altavista, infoseek, and Hotbot. (Source: .http://en.wikipedia.org/wiki/web_portal)

portal page: A complete document rendered by a portal. (Source: http://www.oasis-
open.org/committees/download.php/3343/oasis-200304-wsrp-specification-1.0.pdf)

portlet: A reusable web component that displays relevant information to portal users. Examples
for portlets include email, weather, discussion forums, and news. The purpose of the Web
Services for Remote Portlets interface is to provide a web services standard that allows
for the "plug-n-play" of portals, other intermediary web applications that aggregate
content, and applications from disparate sources. The portlet specification enables
interoperability between portlets and portals. This specification defines a set of APIs for
portal computing that addresses the areas of aggregation, personalization, presentation,
and security. (Source: http://en.wikipedia.org/wiki/Portlets)

Glossary

449

portlet container: A portlet container provides a runtime environment for portlets implemented
according to the portlet API. In this environment portlets can be instantiated, used, and
finally destroyed. The portlet container is not a standalone container like the servlet
container; instead it is implemented as a thin layer on top of the servlet container and
reuses the functionality provided by the servlet container. (Source:
http://66.102.7.104/search?q=cache:2wl3P7hXCWAJ:portals.apache.org/pluto/+what+is
+a+"portlet+container"&hl=en)

POSIX®: Portable Operating System Interface for Computing Environments

primary key: An object that uniquely identifies a row within a table.

procedural language support: Procedural languages are optimized to efficiently manipulate
large quantities of data. Unfortunately, they are not very portable. Java is a useful,
portable alternate to these proprietary languages.

producer: A web service conforming to the WSRP specification. (Source: http://www.oasis-
open.org/committees/download.php/3343/oasis-200304-wsrp-specification-1.0.pdf)

proprietary software: Proprietary software is software for which an individual or company
holds the exclusive copyright, and for which the license rights deny others access to the
software's source code and the right to copy, modify, and study the software. (Source:
http://en.wikipedia.org/wiki/Proprietary_software)

proprietary standard: A standard that is exclusively owned by an individual or organization, the
use of which generally would require a license and/or fee.

proxy pattern: Provides a surrogate or placeholder for another object to control access to it.

public domain: The term “public domain” describes publications, software, and other resources
which are not protected by copyrights or patents.

public key certificate: Used in client-certificate authentication to enable the server, and
optionally the client, to authenticate each other. The public key certificate is the digital
equivalent of a passport. It is issued by a trusted organization, called a certificate
authority, and provides identification for the bearer. (Source:
http://java.sun.com/j2ee/1.4/docs/glossary.html)

publish/subscribe messaging system: A messaging system in which clients address messages to
a specific node in a content hierarchy, called a topic. Publishers and subscribers are
generally anonymous and can dynamically publish or subscribe to the content hierarchy.
The system takes care of distributing the messages arriving from a node's multiple
publishers to its multiple subscribers. Messages are generally not persistent and will only
be received by subscribers who are listening at the time the message is sent. A special
case known as a “durable subscription” allows subscribers to receive messages sent while
the subscribers are not active. (Source: http://java.sun.com/j2ee/1.4/docs/glossary.html)

PWS: Personal Web Server. A web server program for PC users who want to share web pages
and other files from their hard drive. PWS is a scaled-down version of Microsoft's more
robust web server, Internet Information Server IIS. PWS can be used with a full-time
Internet connection to serve web pages for a web site with limited traffic. It can also be
used for testing a web site offline or from a "staging" site before putting it on a main web
site that is exposed to more traffic.

Q

NESI Part 5: Net-Centric Developer's Guide

450

QoS: Quality of Service. Data timeliness, accuracy, completeness, integrity, and ease of use.
Refers to the probability of the network meeting a given traffic contract. In many cases is
used informally to refer to the probability of a packet passing between two points in the
network. (Source: http://en.wikipedia.org/wiki/Quality_of_service) -OR- A defined level
of performance that adapts to the environment in which it is operating. QoS may be
requested by the user of the information. The level of QoS provided is based on the
request, the available capabilities of the provider, and the priority of the user.

R
RAPIDS: Reusable Applications Integration and Development Standards. Established with the

objective of developing a common set of software standards and implementing a set of
processes designed to build portable and reusable software. The intent was to reduce both
the time and cost of developing software for Navy C4I systems. This NCW effort was
merged with the Air Force's C2ERA to form NESI.

RAR: Resource Adaptor Archive. A J2EE component that implements the J2EE Connector
architecture for a specific Enterprise Information System (EIS). J2EE applications
communicate with an EIS through the resource adapter. You can deploy RARs on any
J2EE server. A RAR file may be independent or contained in an EAR file.

RBAC: Role-Based Access Control. An approach to restricting system access to authorized
users. It is a newer and alternative approach to discretionary access control and
mandatory access control. It assigns permissions to specific operations with meaning in
the organization, rather than to low-level data objects. (Source:
http://en.wikipedia.org/wiki/RBAC)

RDBMS: Relational Database Management System. A database management system (DBMS)
that is based on the relational model or that presents the data to the user as relations. A
collection of tables, each table consisting of a set of rows and columns, can satisfy this
property. RDBMSs also provide relational operators to manipulate the data in tabular
form. (Source: http://en.wikipedia.org/wiki/RDBMS)

real-time: An operation within a larger dynamic system is called a real-time operation if the
combined reaction- and operation-time of a task is shorter than the maximum delay that is
allowed, in view of circumstances outside the operation. The task must also occur before
the system to be controlled becomes unstable. A real-time operation is not necessarily
fast, as slow systems can allow slow real-time operations. This applies for all types of
dynamically changing systems. The polar opposite of a real-time operation is a batch job
with interactive timesharing falling somewhere in-between the two extremes. (Source:
http://en.wikipedia.org/wiki/Real_time)

real-time (tracks): (1) Real-time tracks are generated by sensors whose delivery latencies are
sufficiently small to use in anti-air warfare (AAW). They form composite tracks for
situational awareness and are of sufficient quality to engage and fire on the target.
“Quality” is a weapon-dependent term. The key issue is the latency of the arrival and
subsequent usage of the track data. Periodicity is also a component of track quality. (2)
Pertaining to a system or mode of operation in which computation is performed during
the actual time that an external process occurs, in order that the computation results can
be used to control, monitor, or respond in a timely manner to the external process.

real-time system: A system in which the correctness of system behavior depends on both the
logical correctness of the computation and the time at which the result is produced. For a
real-time system, the system fails if its timing constraints are not met. “Real time” is not

Glossary

451

necessarily synonymous with “fast.” The latency of the response might not be an issue,
and it could be on the order of seconds or minutes. But the bounded latency that is
sufficient to solve the problem at hand is guaranteed by the system. "Bounded” means
that the response is neither too early nor too late. In real-time systems, early can be as bad
as late.

reference model: A structure that allows the modules and interfaces of a system to be described
in a consistent manner.

referential integrity: A feature provided by RDBMSs that prevents users or applications from
entering inconsistent data. Most RDBMSs have various referential integrity rules that you
can apply when you create a relationship between two tables.

relational databases (RDBMS): A collection of data items organized as a set of formally-
described tables from which data can be accessed or reassembled in many different ways
without having to reorganize the database tables.

replication: Replication is the process of copying data from one DBMS to another DBMS. As
data are added to or modified in a database, replication adds or modifies the data in
another, physically separated, database.

request-response messaging system: A system of messaging that includes blocking until a
response is received. (Source:http://java.sun.com/j2ee/1.4/docs/glossary.html)

request for information (RFI): Any specific time-sensitive ad-hoc requirement for intelligence
information or products. RFIs support ongoing crises or operations not necessarily related
to standing requirements or scheduled intelligence production. A RFI can be initiated to
respond to operation requirements and will be validated in accordance with the theater
command’s procedures.

requirement: A condition or capability to which a system must conform. Requirements may be
derived directly from user needs, or stated in a contract, standard, specification, or other
formally imposed document. A desired feature, property, or behavior of a system. A
capability that the system must deliver.

resource adapter: A system-level software driver that a Java application uses to connect to an
Enterprise Information System (EIS).

RMI: Remote Method Invocation. A technology that allows an object running in one Java virtual
machine to invoke methods on an object running in a different Java virtual machine.
(Source: http://java.sun.com/j2ee/1.4/docs/glossary.html)

RMI/IIOP: Remote Method Invocation / Internet Inter-Orb Protocol. A version of RMI
implemented to use the CORBA IIOP protocol. RMI over IIOP provides interoperability
with CORBA objects implemented in any language if all the remote interfaces are
originally defined as RMI interfaces. (Source:
http://java.sun.com/j2ee/1.4/docs/glossary.html)

ROE: Rules of Engagement

role mapping: The process of associating groups, principals, or both, recognized by the container
with security roles specified in the deployment descriptor. Security roles must be mapped
by the deployer before a component is installed in the server. (Source:
http://java.sun.com/j2ee/1.4/docs/glossary.html)

rollback: The point in a transaction when all updates to any resources involved in the transaction
are reversed. (Source: http://java.sun.com/j2ee/1.4/docs/glossary.html)

NESI Part 5: Net-Centric Developer's Guide

452

RPC: Remove Procedure Call. An alternative to sockets that abstracts the communication
interface to the level of a procedure call. The programmer has the illusion of calling a
local procedure, but in fact the arguments of the call are packaged and sent to the remove
target of the cell. RPC systems encode arguments and return values using an external data
representation such as XDR. RPC does not translate well into distributed object systems,
which require communication between program-level objects in different address spaces.
To match the semantics of object invocation, distributed object systems require RMI. A
local surrogate (stub) object manages the invocation on a remote object.

RTOS: Real-time Operation System. An operating system that has been developed for real-time
applications. Typically used for embedded applications. This type of operating system
does not necessarily have high throughput — the specialized scheduling algorithm and a
high clock-interrupt rate can both interfere with throughput. (Source:
http://en.wikipedia.org/wiki/RTOS)

S
SAML: Security Assertion Markup Language. An XML standard for exchanging authentication

and authorization data between security domains; that is, between an identity provider
and a service provider. SAML is a product of the OASIS Security Services Technical
Committee. (Source: http://en.wikipedia.org/wiki/SAML)

SAN: Storage Area Network. A network designed to attach computer storage devices such as
disk array controllers and tape libraries to servers. (Source:
http://en.wikipedia.org/wiki/SAN)

SAP: Service Access Point. SAP provides all of the information necessary for a user to access
and consume a service. Includes the logical and physical location of the service on the
net.

SCA: System Communications Architecture

SCDR: Shared Cross-Domain Resource

SDF: Service Definition Framework. SDF provides service users, customers, developers,
providers, and managers with a common frame of reference. Its structure and
methodology enable you to fully define the Service Access Points (SAPs) for the service.

SDK: Software Developer's Kits. A set of development tools that allows a software engineer to
create applications for a certain software package, software framework, hardware
platform, computer system, operating system, and so on. It may be as simple as an
application programming interface in the form of some files to interface to a particular
programming language, or as complex as sophisticated hardware to communicate with a
certain embedded system. Common tools include debugging aids and other utilities.
SDKs frequently include sample code, technical notes, and other supporting
documentation to clarify points from the primary reference material. (Source:
http://en.wikipedia.org/wiki/SDK)

Sea Basing: Projecting Joint Operational Independence through the extended reach of networked
weapons and sensors. Capabilities include: (1) enhanced afloat positioning of joint assets;
(2) offensive and defensive power projection; (3) command and control; (4)integrated
joint logistics; and (5) accelerated deployment and employment timelines.

Glossary

453

Sea Shield: Takes naval defense beyond unit- and task-force defense to provide the nation with
sea-based theater and strategic defense. Capabilities include: (1) homeland defense; (2)
sea and littoral superiority; (3) theater air missile defense; and (4) force entry enabling.

Sea Strike: Describes the capabilities of naval forces to project decisive and persistent offensive
power anywhere in the world. Capabilities include: (1) Persistent intelligence,
surveillance, and reconnaissance; (2) time-sensitive strikes; (3) electronic warfare/ and
information operations; (4) ship-to-objective maneuvers; and (5) covert strikes.

security role: An abstract logical grouping of users that is defined by the application assembler.
When an application is deployed, the roles are mapped to security identities, such as
principals or groups, in the operational environment. In the J2EE server authentication
service, a role is an abstract name for permission to access a particular set of resources. A
role can be compared to a key that can open a lock. Many people might have a copy of
the key; the lock doesn't care who you are, only that you have the right key. (Source:
http://java.sun.com/j2ee/1.4/docs/glossary.html)

separation of implementation and interface: Services expose mission capabilities through well-
defined interfaces and provide reliable and scalable components

service: A service is any function that has a clearly defined interface accessed through well-
defined public access points.

service availability: The name and location of the organization responsible for the day-to-day
operational management of the service. Include operational point of contact information,
trouble-reporting procedures, and applicable POCs, telephone numbers, email addresses,
etc.

service consumer: The person, organization, or automated asset that makes use of a service.

service description: A short descriptive name of the service. Include a human-readable
description and the XML Qualified Name (QName) for the service.

service performance specification: The percentage of time that the service shall be available
over a specified period of time (typically one year). Agreed-upon maintenance or other
scheduled downtime does not count against total availability.

service provider: The person, organization, or automated asset that implements and operates a
service.

service registry: Provides descriptive information about a service, enabling the lookup and
discovery of services.

service response time: The planned performance levels of the service (e.g., throughput, capacity,
or other applicable measure) expressed as a function of work units processed per unit of
time.

servlet: A Java program that extends the functionality of a web server, generating dynamic
content and interacting with web applications using a request-response paradigm.
(Source: http://java.sun.com/j2ee/1.4/docs/glossary.html)

servlet container: A container that provides the network services over which requests and
responses are sent, decodes requests, and formats responses. All servlet containers must
support HTTP as a protocol for requests and responses but can also support additional
request-response protocols, such as HTTPS. (Source:
http://java.sun.com/j2ee/1.4/docs/glossary.html)

NESI Part 5: Net-Centric Developer's Guide

454

servlet context: An object that contains a servlet's view of the web application within which the
servlet is running. Using the context, a servlet can log events, obtain URL references to
resources, and set and store attributes that other servlets in the context can use. (Source:
http://java.sun.com/j2ee/1.4/docs/glossary.html)

servlet session: An object used by a servlet to track a user's interaction with a web application
across multiple HTTP requests. (Source: http://java.sun.com/j2ee/1.4/docs/glossary.html)

session: An interaction between system entities of finite duration, often involving a user, typified
by the maintenance of some state of the interaction for the duration of the interaction.
(Source: http://www.oasis-open.org/committees/download.php/3343/oasis-200304-wsrp-
specification-1.0.pdf)

session bean: An enterprise bean that is created by a client and that usually exists only for the
duration of a single client-server session. A session bean performs operations, such as
calculations or database access, for the client. Although a session bean can be
transactional, it is not recoverable should a system crash occur. Session bean objects can
be stateless or can maintain conversational state across methods and transactions. If a
session bean maintains state, then the EJB container manages this state if the object must
be removed from memory. However, the session bean object itself must manage its own
persistent data. (Source: http://java.sun.com/j2ee/1.4/docs/glossary.html)

SGML: Standard Generalized Markup Language. The parent of both HTML and XML. Although
HTML shares SGML's propensity for embedding presentation information in the markup,
XML is a standard that allows information content to be totally separated from the
mechanisms for rendering that content. (Source:
http://java.sun.com/j2ee/1.4/docs/glossary.html)

shareware: Shareware is software whose license terms permit free redistribution, but also require
that anyone who continues to use a copy must pay a license fee.
(Source:http://www.gnu.org/philosophy/categories.html)

SIAP: Single Integrated Air Picture. The SIAP is the product of fused, common, continuous,
unambiguous tracks of all airborne objects in the surveillance area. Each object within the
SIAP has one, and only one, track number and set of associated characteristics. The SIAP
is developed from near-real time and real time data, and is scalable and filterable to
support situation awareness, battle management, and target engagements. JTAMDO
Battle Management Concept.

SIMPLE: Session Initiation Protocol for Instant Messaging

single touch point: The portal becomes the delivery mechanism for all business information
services.

SIP: Simple Initiation Protocol. The SIP standard concerns simple call placement and is designed
to be easily expandable.

SLA: Service Level Agreements. A contractual vehicle between a service provider and a service
consumer. It specifies performance requirements, measures of effectiveness, reporting,
cost, and recourse. It usually defines repair turnaround times for users.

smart pull: Applications that encourage discovery; users can pull data directly from the net or
use value-added discovery services.

SMTP: Simple Mail Transfer Protocol

SNMP: Simple Network Management Protocol. A design style for building flexible, adaptable,
distributed-computing environments. SOA is the unifying structure in which the

Glossary

455

components of a computer, computer system, or system of systems are integrated. All of
its inter-component functions are defined as services. Service-oriented design is
fundamentally about sharing and reusing functionality across diverse applications.

SOA: Service-Oriented Architecture. Services enable access to data and application functionality
through public interfaces exposed to the enterprise

SOAP: Simple Object Access Protocol. SOAP is a lightweight XML-based messaging protocol
used to encode the information in web-service request-and-response messages before
sending them over a network. SOAP messages are independent of any operating system
or protocol and may be transported using a variety of Internet protocols, including SMTP,
MIME, and HTTP.

soft real-time: In a soft real-time system, the value of an operation declines steadily after the
deadline expires.

software license: A software license sets out the terms under which the software may be used,
and serves as an agreement between the producer and the users of the program. A set of
terms and conditions which the owner of the copyright on a piece of software conveys to
users of the software. Licenses take many different forms.

software patent: Patents grant an inventor the right to exclude others from producing or using
the inventor's discovery or invention for a limited period of time. In order to be patented
an invention must be novel, useful, and not of an obvious nature (see §§ 101 - 103of Title
35). The Federal agency charged with administering patent laws is the Patent and
Trademark Office. See §§ 1-26 of Title 35. Its regulations, pertaining to Patents, are
found in Parts 2 - 6 of Title 37 of the Code of Federal Regulations. Each patent
application for an alleged new invention is reviewed by a examiner to determine if it is
entitled to a patent. See § 1.104 of Part 1 of Title 37 (C.F.R.). While historically a model
was required as part of a patent application, in most cases today, only a detailed
specification is necessary. See §§ 112 - 114 of Title 35. Software may be patented. There
are currently more than 4,000 software patents in effect.

software unit: (1) A separately testable element specified in the design or a computer software
component. (2) A logically separable part of a computer program. (3) A software
component that is not subdivided into other components. (4) (IEEE Std 1008-1987 [10])
Note: The terms “module,” “component,” and “unit” are often used interchangeably or as
subelements of one another in different ways depending upon the context. The
relationship of these terms is not yet standardized. In common usage, the term generally
denotes the smallest compilable software component, in the context of (3) from the IEEE
definition.That is, it can be compiled, and it does not contain any other software
components. See also test unit. (Source: IEEE Std 610.12-1990)

SOO: Statement of Objectives

SOW: Statement of Work

SPAWAR: Space and Naval Warfare Systems Command

SQL: Structured Query Language. The standardized relational database language for defining
database objects and manipulating data. (Source:
http://java.sun.com/j2ee/1.4/docs/glossary.html)

SQL-92: Structured Query Language 1992. The SQL-92 and SQL:1999 standards are very
detailed and specific. At the current time, no RDBMS vendors fully support the entire
standard. Vendors that claim they are SQL-92-compliant or SQL:1999-compliant are
actually only compliant to a certain level. The SQL-92 standard defines the following

NESI Part 5: Net-Centric Developer's Guide

456

levels, which also apply to SQL:1999: (1) Notational; (2) Transitional level SQL92; (3)
Intermediate level SQL92; (4) .Full SQL92. (Source: http://dbs.uni-
leipzig.de/en/lokal/standards.pdf;
http://developer.mimer.com/documentation/html_82/Mimer_SQL_Reference_Manual/Int
ro_SQL_Stds3.html)

SQL/J: Structured Query Language for Java. A set of standards that includes (1) specifications
for embedding SQL statements in methods in the Java programming language and (2)
specifications for calling Java static methods as SQL stored procedures and user-defined
functions. An SQL checker can detect errors in static SQL statements at program
development time, rather than at execution time as with a JDBC driver. (Source:
http://java.sun.com/j2ee/1.4/docs/glossary.html)

SQL:1999: Structured Query Language 1999. See SQL-92.

SSL: Secure Socket Layer. A technology that allows web browsers and web servers to
communicate over a secured connection. The protocol runs above TCP/IP and below
application protocols.(Source: http://java.sun.com/j2ee/1.4/docs/glossary.html)

SSO: Single Sign-On

stakeholder: An enterprise, organization, or individual having an interest or a stake in the
outcome of the engineering of a system. (Source: EIA-632, Annex A)

standard: A document that establishes engineering and technical requirements for products,
processes, procedures, practices, and methods that have been decreed by authority or
adopted by consensus. (Source: EIA-632, Annex A)

stateful session bean: A session bean with no conversational state. All instances of a stateless
session bean are identical. (Source: http://java.sun.com/j2ee/1.4/docs/glossary.html)

stateless session bean: A session bean with no conversational state. All instances of a stateless
session bean are identical. (Source: http://java.sun.com/j2ee/1.4/docs/glossary.html)

stored procedure: A unit or module of code that executes in a database and implement some bit
of application logic or business rule. Often written in proprietary language such as
Oracle's PL/SQL or Sybase's Transact-SQL.

STR: Software Trouble Report

style sheet: A specification of formatting instructions that, when applied to structured
information, provides a particular rendering of that information (for example, online or
printed). Different style sheets may be applied to the same piece of structured information
to produce different presentations of the information. (Source: IBM WebSphere
Glossary)

subsystem: A group of items that performs a set of functions within a particular end product.
(Source: EIA-632, Annex A)

supporting source track: A composite/collaborative track, a multi-sensor correlated track, a
manual track, or an INTEL-generated track that is the basis for declaring the existence of
a system track.

supporting task: Specific activities that contribute to the accomplishment of a joint-mission-
essential task. Supporting tasks are accomplished at the same command level or by
subordinate elements of a joint force (e.g., joint staff, functional components, etc.).

Swing (JFC): Java Foundation Classes. The Java Foundation Classes are a set of Java class
libraries provided as part of the Java 2 Platform, Standard Edition (J2SE) to support

Glossary

457

building graphical user interfaces (GUI) and graphics functionality for client applications
that will run on popular platforms such as Microsoft Windows, Linux, and Mac OSX.

system: Two or more interrelated pieces of equipment (or sets) arranged in a package to perform
an operational function or to satisfy a requirement. (Source: Defense AcquisitionGlossary
of Terms, Jan 2001)

system architecture: The composite of the design architectures for products and their life cycle
processes. (Source: IEEE 1220-1998)

system time: Represents the time standard used within the combat system, including the local
source of Universal Coordinated Time (UTC), a system-wide monotonically increasing
reference time, as well as other representations of the system-wide reference time.

system track: A platform-specific representation of an individual entity, identified by a unique
system track number, containing one or more track state vectors and uncertainties, as well
as associated attributes, attribute uncertainties, and data valid time.

T
tactical data, other: Data of a non-kinematic, non-sensor-processed nature including

intelligence, imagery, voice, context information (e.g., commercial air and shipping
lanes, political boundaries).

task: A discrete event or action, not specific to a single unit, weapon system, or individual, that
enables a mission or function to be accomplished.

TCP: Transmission Control Protocol. One of the core protocols of the Internet protocol suite.
Using TCP, programs on networked computers can create connections to one another,
over which they can send data. The protocol guarantees that data sent by one endpoint
will be received in the same order by the other, without any pieces missing. It also
distinguishes data for different applications (such as a web server and an email server) on
the same computer. (Source:
http://en.wikipedia.org/wiki/Transmission_Control_Protocol)

TCP/IP: Transmission Control Protocol/Internet Protocol. A suite of communications protocols
used to connect hosts on the Internet. TCP/IP uses several protocols, the two main ones
being TCP and IP. TCP/IP is built into the UNIX operating system and is used by the
Internet, making it the de facto standard for transmitting data over networks. Even
network operating systems that have their own protocols, such as Netware, also support
TCP/IP.

TDL: Technical Direction Letter

TDS: Technology Development Strategy. Rationale and description of how the program will be
divided into technology spirals and development increments, specific performance goals,
and exit criteria for moving beyond prototype limitations. Program strategy for the total
R&D program. Specific cost, schedule, performance goals, and test plan for first
technology spiral development.

telnet: The Telnet protocol enables terminals and terminal-oriented processes to communicate on
a network running TCP/IP. (Source: http://www.sun.com/products-n-
solutions/hardware/docs/html/817-6210-10/glossary.html)

NESI Part 5: Net-Centric Developer's Guide

458

TEMP: Test and Evaluation Master Plan. Describes all planned testing, including measures to
evaluate the performance of the system during test periods, an integrated test schedule,
and resource requirements.

tenet: Net-centric design precept.

time-out: A period of time after which some condition becomes true if some event has not
occurred. -OR- The action of so doing. For example, a session that is terminated because
its state has been inactive for a specified period of time is said to “time out”. (Source:
http://www.oasis-open.org/committees/download.php/3343/oasis-200304-wsrp-
specification-1.0.pdf)

TLS: Transport Level Security

TPED: Task, Process, Exploit, Disseminate

TPPU: Task, Post, Process, Use

TQ: Track Quality. A numerical value assigned to a track that represents the accuracy of the
track position. It is computed from data related to the past tracking performance.

track: (1) A set of detections, contacts, hits, or observations, generated by the same real object in
the environment. It is identified by a track number, and has intrinsic and derived
attributes associated with it. (2) A series of related contacts displayed on a data display
console or other display device. (3) To display or record the successive positions of a
moving object.

track kinematics: A track state vector that represents the best understanding of the entity’s
position and movement at a defined point in time with the objective of predicting the
entity’s future position if it maintains a consistent direction of movement.

track number: The unique or alphanumeric identifier associated with a specific set of track data,
representing a vehicular object, point, line of bearing, fix, or area of probability.

track quality (TQ): A numerical value assigned to a track that represents the accuracy of the
track position, computed from data related to past tracking performance.

track state: Smoothed position and velocity representation of an individual object, which
minimizes the RMS errors in estimates of the closest point of approach and time of
closest point of approach.

track, local: A track established within a unit based on sensor measurements derived from the
local platform sensors.

track, remote: A track established by a remote unit, or group of units, and supplied to the local
platform.

trade secret: A trade secret is any formula, pattern, device, or compilation of information used in
a business that gives an advantage over competitors who do not know it or use it.

trademark: Trademarks are generally distinctive symbols, pictures, or words that sellers use to
distinguish and identify the origin of their products. Trademark status may also be
granted to distinctive and unique packaging, color combinations, building designs,
product styles, and overall presentations. It is possible to receive trademark status for
identification that is not obviously distinct or unique, but which has developed a
secondary meaning over time that identifies it with the product or seller. The owner of a
trademark has exclusive right to use it on the product it was intended to identify, and
often on related products. Service marks receive the same legal protection as trademarks
but are meant to distinguish services rather than products. A trademark registered under

Glossary

459

the Lanham Act has nationwide protection. See § 1115 of the Act. Under the Lanham
Act, a seller applies to register a trademark with the Patent and Trademark Office. The
mark can already be in use or be one that will be used in the future.

transaction: A set of input data that triggers execution of a specific processor job. Usually
manipulates data that may need to be rolled back to the original values if any part of the
transaction fails. Transactions enable multiple users to access the same data concurrently.
(Source: http://java.sun.com/j2ee/1.4/docs/glossary.html)

transport infrastructure: The foundation for net-centric transformation in DoD.

TRD: Technical Requirements Document

trigger: In a DBMS, a trigger is a SQL procedure that initiates (fires) an action when an event
(INSERT, DELETE, or UPDATE) occurs. Since triggers are event-driven specialized
procedures, the DBMS stores and manages them. A trigger cannot be called or executed;
the DBMS automatically fires the trigger as a result of a data modification to the
associated table. Triggers maintain the referential integrity of data by changing the data in
a systematic fashion.

trusted path: A communications path where: (1)There is reasonable confidence that there has
not been any malicious alteration of the information; (2) The data are timely, meaning
they originated within a small preceding period of time.

TTP: Tactics, Techniques, and Procedures

tunneling: Transporting IPv6 traffic through IPv4 networks by encapsulating IPv6 packet in IPv4
and vice-versa.

U
UCS: Universal Multiple-Octet Coded Character Set

UDDI: Universal Description, Discovery, and Integration. An industry initiative to create a
platform-independent, open framework for describing services, discovering businesses,
and integrating business services using the Internet, as well as a registry. It is being
developed by a vendor consortium. (Source:
http://java.sun.com/j2ee/1.4/docs/glossary.html)

UDOP: User-Defined Operation Picture

UDP: User Datagram Protocol

UFS: User-Facing Services. A software component that receives a UFS request from the portal. It
returns a UFS response that formats the content for display, usually in a markup language
such as HTML or WML, and produces visual output in a portlet.

UML: Unified Modeling Language. A standard notation for modeling real-world objects as a first
step in developing an object-oriented design methodology. UML is defined by the Object
Management Group (OMG). (Source:
http://publib.boulder.ibm.com/infocenter/adiehelp/index.jsp?topic=/com.ibm.wsinted.glo
ssary.doc/topics/glossary.html)

unassociated measurement report (UMR): (1) A sensor measurement that has been processed
by the originating sensor for clutter rejection and meets defined signal-to-noise
parameters, but has not been associated with a track. (2) A measurement report from a

NESI Part 5: Net-Centric Developer's Guide

460

single sensor that has not been successfully associated with an existing composite or
single-sensor track and which may be the initial detection of a new entity.

Unicode: A standard defined by the Unicode Consortium. Unicode uses a 16-bit code page that
maps digits to characters in languages around the world. Because 16 bits covers 32,768
codes, Unicode is large enough to include all the world's languages, with the exception of
ideographic languages that have a different character for every concept, such as Chinese.
For more information, see http://www.unicode.org/. (Source:
http://java.sun.com/j2ee/1.4/docs/glossary.html)

Universal Joint Task List (UJTL): The comprehensive list of tasks at the Strategic and
Operational levels of war. A menu of capabilities (mission-derived tasks with associated
conditions and standards, i.e., the tools) that a joint force commander may select to
accomplish the assigned mission. Once identified as essential to mission accomplishment,
the tasks are reflected within the command joint mission essential task list.

Universal Navy Task List (UNTL): UNTL = UJTL + NTTL

UNK: Unknown (contact)

URI: Uniform Resource Identifier. An encoded address that represents any web resource, such as
an HTML document, image, video clip, or program. As opposed to a URL or aURN,
which are concrete entities, a URI is an abstract superclass. (Source:
http://publib.boulder.ibm.com/infocenter/adiehelp/index.jsp?topic=/com.ibm.wsinted.glo
ssary.doc/topics/glossary.html)

URL: Uniform Resource Locator. A sequence of characters that represents information resources
on a computer or in a network such as the Internet. This sequence of characters includes
(1) the abbreviated name of the protocol used to access the information resource and (2)
the information used by the protocol to locate the information resource.(Source:
http://publib.boulder.ibm.com/infocenter/adiehelp/index.jsp?topic=/com.ibm.wsinted.glo
ssary.doc/topics/glossary.html)

URN: Uniform Resource Name. A name that uniquely identifies a web service to a client.
(Source:
http://publib.boulder.ibm.com/infocenter/adiehelp/index.jsp?topic=/com.ibm.wsinted.glo
ssary.doc/topics/glossary.html)

USC: Universal Multiple-Octet Coded Character Set

use-case model: A model that describes a system’s functional requirements in terms of use cases.
Consists of all the actors of the system and all the various use cases by which the actor
interact with the system, thereby describing the total functional behavior of the system.

use-case survey: A list of names and perhaps brief descriptions of use cases associated with a
system, component, or other logical or physical entity.

use case: A sequence of actions, performed by a system, that yields a result of value to a user. A
set of actions, including variants, that a system performs that yields an observable result
of value to a particular actor. (UML)

user (security): An individual or application program identity that has been authenticated. A user
can have a set of roles associated with that identity, which entitles the user to access all
resources protected by those roles.

user agent: A system entity that is used by an end user to access a web site. A user agent
provides a runtime environment for distributed application components on the client

Glossary

461

device. (Source: http://www.oasis-open.org/committees/download.php/3343/oasis-
200304-wsrp-specification-1.0.pdf)

UTC: Universal Time. Similar to GMT or Zulu times.

V
VBScript: A programming language developed by Microsoft that is similar to JavaScript. It is

used to embed code into HTML pages. It is actually a subset of Microsoft’s Visual Basic.

vendor: Any person, organization, or automated asset that interfaces with the information
environment as a service consumer or service provider.

VoiceXML: VoiceXML (VXML) is the W3C's standard XML format for specifying interactive
voice dialogues between a human and a computer. It is fully analogous to HTML, and
brings the same advantages of web application development and deployment to voice
applications that HTML brings to visual applications. Just as HTML documents are
interpreted by a visual web browser, VoiceXML documents are interpreted by a voice
browser. A common architecture is to deploy banks of voice browsers attached to the
public switched telephone network (PSTN) so that users can simply pick up a phone to
interact with voice applications. VoiceXML has tags that instruct the voice browser to
provide speech synthesis, automatic speech recognition, dialog management, and
soundfile playback.

VoIP: Voice over Internet Protocol. a set of standards and technologies that allow voice to be
transmitted over IP networks.

VPF: Vector Product Format

VPN: Virtual Private Network

VTC: Video TeleConferencing. A meeting among persons where telephony and closed-circuit
television technologies are used simultaneously. Video teleconference communication is
multi-way and synchronous, as it would be if all parties were in the same room. (Source:
http://en.wikipedia.org/wiki/Video_teleconference)

W
W2W: Web-to-Web

W3C: World Wide Web Consortium. The international body that governs Internet standards. Its
web site is http://www.w3.org/.

WAP: Wireless Application Protocol. WAP is an open international standard for applications that
use wireless communication, such as Internet access from a mobile phone. WAP provides
services equivalent to a web browser with some mobile-specific additions. It is
specifically designed to address the limitations of very small portable devices. During its
first years of existence WAP suffered from considerable negative media attention and has
been criticised heavily for its design choices and limitations. (Source:
http://en.wikipedia.org/wiki/WAP)

WAR: Web Application Archive. A JAR archive that contains a web module.
(Source:http://java.sun.com/j2ee/1.4/docs/glossary.html)

warfare system: All shipboard tactical systems and tactical mission-support systems, such as
weapons, sensors, command and control, navigation, aviation support systems, mission

NESI Part 5: Net-Centric Developer's Guide

462

planning, intelligence, surveillance and reconnaissance, interior and exterior
communications, topside design, and warfare system networks. (Source: N00178-04-R-
2010, AircraftCarrier Warfare Systems Support)

WCS: Web Coverage Services or Web Coverage Server

Web-DAV: Web Distributed Authoring and Versioning

web application: A collection of components that can be bundled together and run in multiple
containers from multiple vendors. -OR- An application written for the Internet, including
those built with Java technologies such as Java Server Pages and servlets, and those built
with non-Java technologies such as CGI and Perl. (Source:
http://java.sun.com/j2ee/1.4/docs/glossary.html)

web browser: A client program that initiates requests to a web server and displays the
information that the server returns. (Source:
http://publib.boulder.ibm.com/infocenter/adiehelp/index.jsp?topic=/com.ibm.wsinted.glo
ssary.doc/topics/glossary.html)

web container: A container that implements the web-component contract of the J2EE
architecture. This contract specifies a runtime environment for web components that
includes security, concurrency, life-cycle management, transaction, deployment, and
other services. A web container provides the same services as a JSP container as well as a
federated view of the J2EE platform APIs. A web container is provided by a web or J2EE
server. (Source: http://java.sun.com/j2ee/1.4/docs/glossary.html)

web module: A deployable unit that consists of one or more web components, other resources,
and a web application deployment descriptor. The web module is contained in a hierarchy
of directories and files in a standard web application format. (Source:
http://java.sun.com/j2ee/1.4/docs/glossary.html)

web page: A document created with HTML (HyperText Markup Language) that is part of a
group of hypertext documents or resources available on the World Wide Web.
Collectively, these documents and resources form what is known as a web site. You can
read HTML documents that reside somewhere on the Internet or on your local hard drive
with software called a web browser. Web pages can contain hypertext links to other
places within the same document, to other documents at the same web site, or to
documents at other web sites.

web server: Software that provides services to access the Internet, an intranet, or an extranet. A
web server hosts web sites, provides support for HTTP and other protocols, and executes
server-side programs (such as CGI scripts or servlets) that perform certain functions. In
the J2EE architecture, a web server provides services to a web container. For example, a
web container typically relies on a web server to provide HTTP message handling. The
J2EE architecture assumes that a web container is hosted by a web server from the same
vendor, so it does not specify the contract between these two entities. A web server can
host one or more web containers. (Source:
http://java.sun.com/j2ee/1.4/docs/glossary.html)

web server provider: A vendor that supplies a web server. (Source:
http://java.sun.com/j2ee/1.4/docs/glossary.html)

web service: An application that exists in a distributed environment, such as the Internet. A web
service accepts a request, performs its function based on the request, and returns a
response. The request and the response can be part of the same operation, or they can
occur separately, in which case the consumer does not need to wait for a response. Both

Glossary

463

the request and the response usually take the form of XML, a portable data-interchange
format, and are delivered over a wire protocol, such as HTTP. (Source:
http://java.sun.com/j2ee/1.4/docs/glossary.html) -OR- A web service is a software
application or component that is identified by a URI and can be accessed over the
Internet. It uses a vendor/platform/language-neutral data interchange format to invoke the
service and supply the response. Web services use a message exchange pattern that is
sufficiently well defined to be processed by a software application. Its interfaces and
binding are capable of being defined, described, and discovered by XML artifacts. It
supports direct interactions with other software applications using XML-based messages
via Internet-based protocols.

web site: A web site, website, or WWW site (often shortened to just "site") is a collection of web
pages: i.e., HTML/XHTML documents accessible via HTTP on the Internet. All publicly
accessible web sites in existence comprise the World Wide Web. The pages of a web site
are accessed from a common root URL, the homepage, and usually reside on the same
physical server. The URLs of the pages organize them into a hierarchy, although the
hyperlinks between them control how the reader perceives the overall structure and how
the traffic flows between the different parts of the site. (Source:
http://en.wikipedia.org/wiki/web_site)

well-formed: An XML document that is syntactically correct. It does not have any angle brackets
that are not part of tags, all tags have an ending tag or are themselves self-ending, and all
tags are fully nested. Knowing that a document is well formed makes it possible to
process it. However, a well-formed document may not be valid. To determine that, you
need a validating parser and a DTD. (Source:
http://java.sun.com/j2ee/1.4/docs/glossary.html)

WfMC: Workflow Management Coalition

WFS: Web Feature Services or Web Feature Server

WML: Wireless Markup Language. WML is the primary content format for devices that
implement the WAP (Wireless Application Protocol) specification based on XML, such
as mobile phones. (Source: http://en.wikipedia.org/wiki/Wireless_Markup_Language)

WMS: Web Mapping Service

WNS: Web Notification Services

workflow application: One where various applications and components must process data to
complete a task. For example, consider a purchase order that moves through various
departments for authorization and eventual purchase. The orders may be treated as
messages, which are put into various queues for processing. A workflow process involves
constant change and update. You can introduce new components into the operation
without changing any code.

WS-I: Web Services Interoperability

WSDL: Web Services Description Language. An XML format for describing network services as
a set of endpoints operating on messages containing either document-oriented or
procedure-oriented information. The operations and messages are described abstractly,
and then bound to a concrete network protocol and message format to define an endpoint.

WSRM: Web Services Reliable Messaging. XACML supports exchange of access control
information using XML.

NESI Part 5: Net-Centric Developer's Guide

464

WSRP: Web Services for Remote Portlets. The WSRP specification defines a web-service
interface for interacting with interactive presentation-oriented web services. It has been
produced through the joint efforts of the Web Services for Interactive Applications
(WSIA) and Web Services for Remote Portals (WSRP) OASIS Technical Committees.
Scenarios that motivate WSRP/WSIA functionality include: (1) portal servers providing
portlets as presentation-oriented web services that can be used by aggregation engines;
(2) portal servers consuming presentation-oriented web services provided by portal or
non-portal content providers and integrating them into a portal framework. (Source:
http://www.oasis-open.org/committees/download.php/3343/oasis-200304-wsrp-
specification-1.0.pdf)

WSRP service: Presentation-oriented, interactive web services that can be aggregated by
consuming applications. (Source: OASIS WSRP Specification 1.0 Glossary)

WWW: World Wide Web. The World Wide Web ("WWW," or simply "web") is an information
space in which items of interest, referred to as resources, are identified by global
identifiers called Uniform Resource Identifiers (URI). The term is often mistakenly used
as a synonym for the Internet, but the web is actually a service that operates over the
Internet. (Source: http://en.wikipedia.org/wiki/World_Wide_web)

X
XACML: eXtensible Access Control Markup Language. An OGC-compliant interface layer that

runs on both C2PC and COE 4.x.

Xalan-Java: A XSLT processor made by Apache.

Xalan processor: An XSLT processor that is part of the Apache project. (Source:
http://publib.boulder.ibm.com/infocenter/adiehelp/index.jsp?topic=/com.ibm.wsinted.glo
ssary.doc/topics/glossary.html)

XIL: XIS Integration Layer

XKMS: XML Key Management Specification

XML: eXtensible Markup Language. A markup language that allows you to define tags (markup)
to identify the content, data, and text in XML documents. It differs from HTML, the
markup language most often used to present information on the Internet. HTML has fixed
tags that deal mainly with style or presentation. An XML document must undergo a
transformation into a language with style tags under the control of a style sheet before it
can be presented by a browser or other presentation mechanism. Two types of style
sheets used with XML are CSS and XSL. Typically, XML is transformed into HTML for
presentation. Although tags can be defined as needed in the generation of an XML
document, you can use a document type definition (DTD) to define the elements allowed
in a particular type of document. A document can be compared by using the rules in the
DTD to determine its validity and to locate particular elements in the document. A web
services application's J2EE deployment descriptors are expressed in XML with schemas
defining allowed elements. Programs for processing XML documents use SAX or DOM
APIs. (Source: http://java.sun.com/j2ee/1.4/docs/glossary.html)

XML schema: A database-inspired method for specifying constraints on XML documents using
an XML-based language. Schemas address deficiencies in DTDs, such as the inability to
constrain the kinds of data that can occur in a particular field. Because schemas are
founded on XML, they are hierarchical. Thus it is easier to create an unambiguous

Glossary

465

specification, and it is possible to determine the scope over which a comment is meant to
apply. (Source: http://java.sun.com/j2ee/1.4/docs/glossary.html)

XMPP: eXtensible Messaging Presence Protocol

XPath: XML Path. An XSL sublanguage designed to uniquely identify or address parts of a
source XML document, for use with XSLT. XPath also provides basic facilities for
manipulation of strings, numbers, and Booleans. (Source:
http://publib.boulder.ibm.com/infocenter/adiehelp/index.jsp?topic=/com.ibm.wsinted.glo
ssary.doc/topics/glossary.html)

XSD: XML Schema Definition. The W3C specification for defining the structure, content, and
semantics of XML documents. (Source: http://java.sun.com/j2ee/1.4/docs/glossary.html)

XSL: eXtensible Stylesheet Language. A standard that lets you do the following: (1) Specify an
addressing mechanism, so that you can identify the parts of an XML document that a
transformation applies to (XPath). (2) Specify tag conversions, so that you can convert
XML data into different formats (XSLT). (3) Specify display characteristics, such as page
sizes, margins, font heights and widths, and the flow objects on each page. Information
fills in one area of a page and then automatically flows to the next object when that area
fills up. That allows you to wrap text around pictures, or continue a newsletter article on a
different page (XSL-FO). (Source: http://java.sun.com/j2ee/1.4/docs/glossary.html)

XSL-FO: eXtensible Stylesheet Language – Formatting Objects. XSL-FO is a language that
specifies the physical layout, coloring, and typographyof XML documents for screen,
print, and other media. In this sense it is similar to CSS, but it is more powerful and
flexible, particularly with regard to pagination and scrolling. (Source:
http://java.sun.com/j2ee/1.4/docs/glossary.html)

XSLT: eXtensible Style Language Transformations. An XML document that controls the
transformation of an XML document into another XML document or HTML. The target
document often has presentation-related tags dictating how it will be rendered by a
browser or other presentation mechanism. XSLT was formerly a part of XSL, which also
included a tag language of style flow objects. (Source:
http://java.sun.com/j2ee/1.4/docs/glossary.html)

XSLTC: eXtensible Style Language Transformations Complier. A compiling version of XSLT.
(Source: http://java.sun.com/j2ee/1.4/docs/glossary.html)

XTCF: eXtensible Tactical C4I Framework

467

Index
A
Apache Ant ...281, 299
Apache Axis..282, 299
Apache Xalan-Java ...284
APIs

Geobject ...89, 91
GO-1 ..89
guidance ...5
JNDI...45
UDDI4J ..297

applications
application servers..108
applications services...130
namespace management.....................................262

architecture
C/JMTK ...104, 106
C/JMTK toolkit ..108
JWC ...128
OGC web services distributed..............................85
thick clients ..144
thin clients..143

ArcIMS ...108, 111, 130
ArcObjects ..108
ArcSDE...108, 131
ATLAS ...123
automated testing tools ...262
B
build lists...267
build process ...281
C
C/JMTK

architecture...104, 106
C2PC to C/JMTK WFS example126
components ..108
ESRI ArcIMS and web client in Tomcat example

...111
ESRI WFS in Tomcat example116
Extended User Community105
Foreign Military Sales..105
JMTK vs. C/JMTK ..106
licenses...105
references ...104

C/JMTK..104
C/JMTK..107
C2IEDM ...31
C2PC

C2PC to C/JMTK WFS example126
C2PC to NOSWC WFS example124

C2PC...123
catalina_home environment variable284
catalina_opts environment variable.........................284
cell phones ..146
CIIL ..123

Codewarrior IDE.. 147
COE-M build lists .. 267
componentizing .. 6
COMPOSE software list .. 277
conceptual models .. 31
D
data exposing community....................................... 133
data servers... 108
Data Source Interfaces (DSIs)

GO-1/Geobject API in NOSWC example 134
Members DSI .. 141
NOSWC .. 94
updating attributes ... 143

Data Source Interfaces (DSIs) 134
data tier

data modeling .. 31
implementations .. 30
normalization... 31
OS file systems.. 30
XML.. 33

data tier... 29
databases

decoupling from applications 30
hierarchical .. 30
native XML ... 30
niche .. 30
object-oriented... 30
relational.. 30

development communities...................................... 133
differentiated services .. 46
directories

databases, differences between............................ 40
JNDI .. 45
LDAP .. 41

directories... 40
disclaimer ... 3
discovery

Java JNDI to LDAP example 41
references .. 46
UDDI... 45

discovery .. 40
Document Literal style 19, 134
domain analysis.. 31
E
enterprise services .. 39
examples

C2PC to C/JMTK WFS 126
ESRI ArcIMS and web client in Tomcat 111
ESRI WFS in Tomcat example.......................... 116
ESRI WFS to NOSWC WFS client................... 122
GO-1/Geobject APIs in NOSWC 134
Java JNDI to LDAP... 41
jUDDI registry... 287
SCA-compliant software component................... 56

NESI Part 5: Net-Centric Developer's Guide

468

vendor neutrality ..2
WFS to NOSWC in JBoss....................................94
WFS to NOSWC in Tomcat...............................101

F
feature store service ..129
G
Geobject

sample DSI...134
Geobject..89, 90, 91
Geography Markup Language87
GIS

architecture...133
ATLAS...123
C/JMTK ...104
examples ..93
Geobject ...90
NESI goals ...83
OGC WS distributed architecture.........................85
thick clients ..144
Web Coverage Service (WCS).............................89
Web Feature Service ..86

GIS..83
GIS..83
GO-1 APIs ..89
guaranteed services ...46
I
image processing...107
J
Java

Apache Ant ..281
Java Community Process266
Java JNDI to LDAP example41
Java Standard Secure Socket Edition (JSSE)299
Java.net ..266
JavaMail...299
JNDI...45
jUDDI ..287
Sun Developer's Network...................................266
Xalan-Java..284
Xerxes2 Java Parser ...285

JMTK..106
JNDI

guidance ...45
JNDI ...45
JTRS

components ..53
radio composition...51
references ...79
SCA-compliant software component example56
software components..54

JTRS ...49, 50
jUDDI

configuring...288
creating a UDDI publisher297
database..290
installing...287
testing...290, 297
web server configuration....................................295

jUDDI ...287

JWC
application services ... 130
architecture .. 128
best practices ... 132
client .. 131
components.. 131
feature store service... 129
mapping service... 130
mediator service .. 131
references .. 132
security .. 131

JWC.. 127
L
LDAP

Java JNDI to LDAP example 41
LDAP ... 41
legacy wrapping ... 6
log4j.properties... 288
logical models .. 31
M
mapping service ... 130
mediator service ... 131
middle tier .. 9, 10
mobile code .. 265
mobile devices

best practices ... 145
PalmOS.. 147

mobile devices.. 145
mobile devices.. 146
multi-tier architectures ... 279
N
namespaces... 262
Navy

Navy Enterprise Portal (NEP) Architecture....... 279
Navy Open Source WebCOP (NOSWC)............. 94
OGC architecture initiatives 85
thick clients, migrating to OGC......................... 144
thin clients, migrating to OGC........................... 143

Navy... 267
NESI

correspondence with other initiatives 279
documentation disclaimer...................................... 3
documentation structure .. 3
references .. 257
releasability statement ... 2
vendor neutrality disclaimer 2

NESI... 1
network security ... 279
networks ... 39
normalization ... 31
NOSWC

C2PC to NOSWC WFS example 124
ESRI WFS to NOSWC WFS client example 122
GO-1/Geobject APIs in NOSWC example........ 134
WFS to NOSWC in JBoss example..................... 94
WFS to NOSWC in Tomcat example................ 101

NOSWC ... 94
O
open-source tools

Index

469

Apache Ant ..281
Apache Axis...282
jUDDI ..287
Tomcat ...284
Xalan-Java..284
Xerxes2 Java Parser ...285

open-source tools ..281
P
PalmOS...145, 147
parsing XML...36
physical models ..31
POSE emulator ...147
PRC-TOOLS GCC ...147
Q
QoS

implementations ...46
references ...47

QoS ...46
R
reference implementations ..83
references..257
releasability statement...2
rendering control community..................................133
RPC style ..19
S
security

JNDI...45
JWC ...131
LDAP...41
network security guidance..................................279
testing...262

sensor modeling ..107
service registries ...40, 45
SOAP..19
software ..267, 277
Software Communication Architecture (SCA)

device interface ..50
hardware configuration ..55
JTRS software ..51
member variables ...50
resource interface ...50
software component example...............................56

Software Communication Architecture (SCA)49
Software Communication Architecture (SCA)50
Software Communication Architecture (SCA)51
Software Communication Architecture (SCA)55
Solaris ...267
Sun Developer's Network266
T
testing..262
thick clients

C/JMTK components ...108
guidance ...144
migrating to OGC...144

thin clients
C/JMTK components ...108
migrating to OGC...143

tiers

JWC architecture ... 128
transport... 39

tiers... 9, 10, 29
Tomcat ..101, 111, 116, 284
U
UDDI

jUDDI.. 287
scripts for database tables 290
UDDI browser ... 298, 299
UDDI4J ... 297

UDDI.. 45
UDDI4J .. 297, 299
user registries ... 40
V
vendors

vendor neutrality.. 2
Web Feature Service (WFS)................................ 86

W
Web Coverage Service (WCS)........................... 86, 89
web services

.NET.. 18, 27
componentizing ... 6
feature store service... 129
SOAP... 19

web services ... 15
web services ... 24
web.xml.. 288
webCOPs

clients .. 131
overlays ... 142

webCOPs.. 128
WFS

C2PC to C/JMTK WFS example....................... 126
C2PC to NOSWC WFS example 124
communication models.. 87
ESRI WFS in Tomcat example.......................... 116
ESRI WFS to NOSWC WFS client example 122
feature store service... 129
GML.. 87
public interfaces .. 87
vendors .. 86
WFS to NOSWC in JBoss example..................... 94
WFS to NOSWC in Tomcat example................ 101

WFS ... 86
WFS ... 86
wireless devices.. 145, 146
wrapper classes... 33
X
Xalan-Java.. 284, 299
Xerces2 Java Parser.. 285, 299
XIL... 123, 126
XML

parsers ... 33
parsing ... 36
schema processor... 285
web services .. 15, 24
Xalan-Java... 284
Xerxes2 Java Parser... 285

XML... 33

470

	NESI implementation framework
	References
	Overview
	Releasability statement
	Vendor neutrality
	Disclaimer
	Contributions and comments
	Open-source site
	NESI development guidance
	Documentation structure

	Technical guidance and tactics
	High-level guidance
	Publish and insulate public interfaces
	Implement a component-based architecture
	Automate the software build process

	Middle tier
	J2EE environment
	Guidance
	Best practices
	Examples
	References
	Web service models
	Key characteristics

	Guidance
	Examples
	Navy operational example: Exposing web services for METOC

	References
	References
	SOAP
	Guidance
	Examples

	Web services
	Guidance
	Examples
	References

	.NET framework
	Web services

	Data tier
	Decouple databases from applications
	Guidance

	Database implementations
	Guidance

	Guidance
	Best practices
	RDBMS internals
	Guidance
	Best practices

	XML
	References
	Wrapping XML parsers
	Parsing XML strategies

	Networks and enterprise services
	Discovery
	Directory
	Lightweight Directory Access Protocol (LDAP)
	Example: Java JNDI to LDAP
	Java Naming & Directory Interface (JNDI)
	Universal Description, Discovery, and Integration (UDDI)
	References

	Quality of Service (QoS)
	Overview
	References

	Communications and transport
	Joint Tactical Radio System (JTRS)
	Overview
	Example: SCA-compliant software component
	References

	Reference implementations
	GIS display environments
	Goals
	NESI strategy
	Migration strategies
	OGC WS architecture
	Web Feature and Coverage Services
	OGC API
	Examples: GIS open architecture
	Implementing GIS open architecture
	Migrating to GIS open architecture

	Mobile devices
	Overview
	Best practices
	Wireless cell phone environments
	PalmOS 4

	Guidance
	Guidance details
	G1001
	G1002
	G1003
	G1004
	G1005
	G1007
	G1008
	G1010
	G1011
	G1012
	G1014
	G1018
	G1019
	G1020
	G1021
	G1022
	G1027
	G1030
	G1031
	G1032
	G1035
	G1037
	G1043
	G1044
	G1045
	G1049
	G1050
	G1052
	G1053
	G1055
	G1056
	G1058
	G1060
	G1071
	G1073
	G1078
	G1079
	G1080
	G1082
	G1083
	G1084
	G1085
	G1086
	G1087
	G1088
	G1090
	G1091
	G1093
	G1094
	G1095
	G1101
	G1117
	G1118
	Example

	G1119
	G1121
	G1123
	G1126
	G1127
	G1131
	G1132
	G1141
	G1144
	G1146
	G1147
	G1148
	G1151
	G1154
	G1155
	G1190
	G1200
	G1201
	G1202
	G1203
	G1204
	G1205
	G1208
	G1209
	G1210
	G1211
	G1212
	G1213
	G1214
	G1215
	G1216
	G1217
	G1218
	G1219
	G1220
	G1221
	G1222
	G1223
	G1224
	G1225
	G1236
	G1237
	G1239
	G1245

	Best practices
	Best practices details
	BP1038
	BP1039
	BP1040
	BP1041
	BP1042
	BP1054
	BP1075
	BP1076
	BP1077
	BP1097
	BP1098
	BP1100
	BP1109
	BP1111
	BP1112
	BP1116
	BP1122
	BP1139
	BP1140
	BP1143
	BP1145
	BP1177
	BP1226
	BP1227
	BP1228
	BP1229
	BP1230
	BP1231
	BP1232
	BP1233
	BP1234
	BP1235
	BP1240
	BP1241
	BP1242
	BP1243
	BP1244
	BP1246
	BP1247
	BP1248
	BP1249
	BP1250
	BP1251
	BP1252
	BP1253
	BP1254
	BP1255
	BP1256
	BP1257
	BP1258
	BP1259
	BP1260
	BP1261
	BP1262
	BP1263
	BP1264
	BP1265

	Appendices
	Technical References
	Books
	Web sites

	Automated testing tools
	Environments
	Security testing tools
	Namespace management procedures
	Mobile code
	Java developer programs
	Navy-specific guidelines
	COE-M build lists
	COMPOSE software list
	Network security policy guidance

	Cross-reference between NESI and other initiatives
	Navy Enterprise Portal (NEP) architecture

	Open-source tools
	Apache Ant
	Apache Axis
	Tomcat
	Xalan-Java
	Xerces2 Java Parser
	jUDDI
	UDDI browsers

	Glossary
	Index

